
CHIMERA - A NEW, FAST, EXTENSIBLE AND GRID ENABLED
NAMESPACE SERVICE

Mr. Mkrtchyan Tigran, Dr. Fuhrmann Patrick, Mr. Gasthuber Martin
DESY, Hamburg, Germany

Abstract
After successful implementation and deployment of the

dCache system over the last years, one of the additional
required services, the namespace service, has faced
additional and completely new requirements. Most of
them are caused by the scaling of the system, the
integration with Grid services and the need for redundant
(high availability) configurations. The existing system,
having only NFSv2 access path, is easy to understand and
is well accepted by the users. This single 'access path'
limits data management task of making use of classical
tools like 'find', 'ls' and others. This is intuitive for most
users, but failed while dealing with millions of entries
(files) and more sophisticated organisational schemes
(metadata). The new system should support a native
programmable interface (deeply coupled, yet fast), a
'classical' NFS path (now version 3 at least), a dCache
native access and an SQL path allowing any type of
metadata to be used in complex queries. Extensions with
other 'access paths' will be possible. Based on the
experience with the current system we highlight on the
following requirements:

➢ large file support (64 Bit) + large number of files
(>108)

➢ fast
➢ platform independence (runtime + persistent objects)
➢ Grid name service integration
➢ custom dCache integration
➢ redundant, highly available runtime configurations

(concurrent backup etc.)
➢ user accessible metadata (store and query)
➢ ACL support
➢ pluggable authentication (e.g. GSSAPI)
➢ external processes can register for namespace events

(e.g. removal/creation of files)

A detailed analysis of the requirements, the chosen
design and selection of existing components will be
discussed. The current schedule should allow to show the
first running prototype – a RDBMS back ended file
system with NFSv3 interface and alternative (JDBC)
access path to files metadata.

THE PROJECT GOAL
Modern experiments produce terabytes of data, which

has to be managed by tape storage systems. While the
user-intuitive way to access data is through file names,
the storage systems normally deal with tapes, offsets and
disks. A system, which could have a file system view
from one side and interact with storage system from the

other side became crucial. Based on our experience and
actual needs a list of requirements was compiled:

• Unique file ID independent from name
File names are not persistent, while data is. We
can rename files, but still be able to access original
data;

• Name-to-ID and vice versa mapping
By referencing files in storage system by ID we
need a possibility to find the file ID while users
will operate by file names;

• Callback on file system events, like remove and
move

Removing a file in the file system has to trigger an
associated action of file removal in the storage
system. Moving a file from one directory to
another may trigger a migration of the file from
one storage system to another;

• Directory tags, inherited by subdirectories
possibility to define default values, like OSM-
group or file-family dependence, or to which tape-
set a file have to reside in. Usually, directories are
created prior to files, and de-facto become a
natural holder of initial values;

• Metadata association with files
arbitrary metadata can be associated with files, in
particular storage system specific information like
tape name, offset and so on;

• Worm holes
A convenient feature: files that are not shown in
the directory listing, but are available in all
directories. Can be used for distributing
configuration files;

• Additional channel for the client to access
metadata

client applications have to be able to store and
retrieve metadata.

CURRENT SOLUTION
In 1997, we have introduced PNFS[1] – an NFS server

on top of a database. PNFS allows all NFSv2 operations
except actual data IO. The data access is performed by
native store/retrieve utilities of the storage system. The
implementation is based on user-space NFS daemon,
which communicates with the DB-server through a
shared-memory block. The DB-server simulates a file
system on top of gdbm. Each subdirectory can have its
own DB-server, which runs as a separate process. Access
to metadata is done through special file name syntax.

Currently there are two HEP labs that heavily rely on
PNFS – DESY and FNAL, and few others that use PNFS
as a component of dCache in LCG2. At DESY we have
55 DB-server processes, serving more than 3 million file

entries, which corresponds to 500TB of data in HSM
with 1KHz access rate. All databases together uses 20GB
disk space.

PNFS is being used by various storage systems –
Enstore[2], OSM, dCache[3]. Enstore and OSM store
references to files – “bit file IDs”, which are used by
HSM to identify files. dCache stores file locations, e.g.
pool names. In the past some experiment-specific file
access libraries used to store file locations in SHIFT
pools, now replaced by dCache.

Despite successful deployment of PNFS, we
found spots which may cause limitations in future.

➢ Max. file size 2 GB due to NFSv2 specification
➢ Metadata access only through NFS:

 no direct path for attached storage systems;
 all metadata types use the same channel and the

store:
 heavy access to metadata by storage system

has performance impacts on regular NFS
operations;

➢ Metadata are stored as BLOB:
 no metadata query functionality;

➢ No ACLs
➢ NFS security (= no security), although we can

disable some NFS operations (remove)

NEW IMPLEMENTATION
While the file size limitation is solved by new NFSv3

front-end, metadata access path needs changes in design.
Since we heavily depend on metadata stored in PNFS, a
high throughput access to metadata becomes crucial for
very large installations. In the mean time, the main
“customer”, dCache, was modified to optionally store
instance metadata, cacheinfo, in private database. We
consider two possible solutions: using a file system with
DMAPI[5] (Data management API) support, like JFS or
XFS, or simulating a file system on top of RDBMS. Each
approach has it's own advantages and disadvantages:

Table 1: RDBMS evaluation
Advantages of RDBMS Disadvantages of

RDBMS

Query Language
Automatic database

partitioning
Backup
Consistency check
Triggers
Stored procedures
JDBC/ODBC makes

implementation
independent

Difficult to put file
system tree into tables

Performance with
growing number of clients
and entries not
investigated.

Table 2: DMAPI evaluation

Advantages of DMAPI Disadvantages of
DMAPI

Well known
Vendor support
Existing implementations

for SGI, Linux, Solaris
Existing backup tools
Data Management API
Posix ACL's
Can be shared by any

known protocol

Still metadata and file
names in the same location

No directory tag
inheritance.

No wormholes with
standard sharing protocols
(NFS)

Possibly, a combination of both approaches will be
taken.

The original idea of implementing a GRID Replica
Catalogue as a core component was prohibited. The
Replica Catalogue interface will become one of the
external access interfaces (Figure 1).

Figure 1

It's obvious that nowadays the UNIX permissions are
insufficient for many applications, especially in GRID
context. Most of modern file systems support ACLs. The
choice here is not obvious either:

• NT ACL's
• POSIX ACLs (many drafts, no actual standard)

Posix 1003.6 draft 13;
Posix 1003.1e draft 15;

• UNIX Variants
Based on various Posix drafts, with some extensions;

• DCE (AFS) ACLs
based on draft 13 with a fair number of extensions;

• GRID-map file
More or less UNIX-like – readers/writers;

In addition POSIX(UNIX) and NT ACLs have a
different behaviour:

Posix – uid/gid based, first/best match
NT – SID (principal) based, order independent

(Posix draft 13 corresponds to a subset of NT ACL's.)

While most of HEP applications are UNIX-based, we
have seen growing demand of GRID-based access, where
user DN(Distinct Name) replaces the uid. Currently, our
strategy moves in direction of NT ACL's, at least the
subset used by POSIX plus principal handling, but it's still
under discussions.

CONCLUSIONS AND OUTLOOK
During the decades of deployment PNFS has done a

decent job being stable, robust and flexible. To keep that
high standard also in the future it needs some
modifications and additions. The NFSv3 front-end exists
and is currently in the test phase. A running prototype of
an RDBMS based file system simulation is available and
currently being tested in terms of performance and
scalability. We are in contact with DMAPI-enabled
filesystem developers to check out all needed
functionality in DMAPI and underlying filesystems.
During design evaluation, GRID Replica Catalogue
concept shifted from core functionality area to optional

access interface. The situation with ACLs is not fully
clear yet and we are in contact and discussions with other
developers. Although we are familiar with enstore, osm
and dCache, a provided solution will help to manage
other storage systems as well.

Investigations are needed to choose the most
appropriate solution and, like mythological chimera*, we
need to involve several technologies to achieve our goal.

REFERENCES
[1] http://www-pnfs.desy.de/
[2] http://hppc.fnal.gov/enstore/index.html
[3] http://www.dcache.org
[4] http://www.ietf.org/rfc/rfc1813.txt
[5] http://www.opengroup.org/pubs/catalog/c429.htm

* An animal from ancient Greek mythology with a lion’s
head and fore parts, a goat’s body, a dragon’s rear, and a
tail in the form of a snake.

