
A PATTERN-BASED CONTINUOUS INTEGRATION FRAMEWORK FOR
DISTRIBUTED EGEE GRID MIDDLEWARE DEVELOPMENT

A. Di Meglio, J. Flammer, R. Harakaly, M. Zurek, CERN, Geneva, Switzerland

E. Ronchieri, INFN, Italy

Abstract

Software Configuration Management (SCM) Patterns
and the Continuous Integration method are recent and
powerful techniques to enforce a common software
engineering process across large, heterogeneous, rapidly
changing development projects where a rapid release
lifecycle is required. In particular the Continuous
Integration method allows tracking and addressing
problems in the software components integration as early
as possible in the release cycle. Since new incremental
code builds are done several times per day, only small
amounts of new code is built and integrated at relatively
short intervals. Developers are immediately notified of
arising problems and integrators can pinpoint
configuration and build problems to the level of single
files within any given software component. This paper
presents the implementation and the initial results of the
application of such techniques in the SCM and Integration
of the EGEE Grid Middleware software [1]. The software
is based on a Service Oriented Architecture model where
services are developed in different programming
languages by development groups in several European
locations under stringent quality requirements. A number
of basic SCM patterns, such as the Workspace, the Active
Line, the Repository, are introduced and the Continuous
Integration tools used in the project are presented with a
discussion of the advantages and disadvantages of using
the method.

PATTERNS AND THE EGEE PROJECT
The concepts of pattern and pattern language were

originally developed in the ‘70s in the context of
architectural design [2]. Patterns were later successfully
applied to software in the ’90 in the context of OO design
[3]. More recently the concepts have been applied to other
areas of the software development cycle and in particular
to architecture, software configuration management and
quality assurance [4].

A pattern can be generically defined as “a proven
solution to a known problem in a defined context”. A
pattern language is a set of pattern that together defines
the usage context for all collaborating patterns.

The EGEE gLite project [1, 5] is tasked to produce a set
of quality middleware services for grid computing by re-
engineering existing components and developing new
functionality. It counts more than 80 developers in 8
European countries producing software in Java, C, C++,
Perl and other languages for several different platforms,
including Linux and Windows (see Table 1).

Table 1: Single Lines Of Code (SLOC) per language

Language SLOC

Java ~122.500 (29%)

C++ ~121.000 (28%)

C ~105.500 (25%)

Perl ~50.500 (12%)

Other ~20.500 (6%)

The requirements of the Software Configuration

Management system and the Build system are necessarily
complex. The systems must be platform independent,
language independent and allow reusing existing software
component and build tools.

The following sections describe how the
implementation of a carefully chosen set of SCM patterns
has helped achieving the goals.

CONFIGURATION MANAGEMENT
The first fundamental task in the software development

management is to provide a consistent, reproducible
environment where source code can be stored and
versioned. Additionally, the source code must be available
to all developers and several different configurations may
have to coexist without conflicts between them and with
the host build system.

The task can be achieved by application of the
workspace and repository patterns. The workspace pattern
and its derived companion, the private workspace,
identify an area on a computer where all configuration
management and build operations can be carried out.
Each workspace is like a sand box containing everything
needed to produce a version of the software including
both the project source code and all its external
dependencies. More workspaces can be created on a
single computer and live together without conflicts even
if they host completely different versions of the project
software.

The repository pattern identifies a common, well-know
place where source code and external dependencies are
stored and versioned. The repository can itself have a
derived pattern called private repository that act as a
cache inside a private workspace.

The gLite configuration management system is based
on the open source CVS (Concurrent Version System)

program [6]. Although CVS is a powerful system with
good support for concurrent remote development, it lacks
built-in support for workspaces and storage of large
binary packages (for example external dependencies for
the project) is not recommended (slow access and
retrieval). CVS has therefore been extended by
introducing the concept of Configuration Specification
Files. In addition a more generic concept of repository
has been introduced in the gLite infrastructure.

A Configuration Specification File (CSF) is a
description of all the component of the project in CVS
together with a particular tag. The CSF itself is stored in
CVS and tagged. Whenever a version of the project must
be produced, the corresponding CSF can be checked out
and processed to fill the local workspace with the
consistent set of all components making up the project.
Different CSF can be created to extract only portion of the
entire project, such as subsystems or maintenance
packages. In addition, the CSF can be augmented to
include also the external dependencies taken from one of
the available repositories.

The repository pattern has been generalized by
applying it not only to the CVS repository, but also to
other types of software repositories. In particular a
repository hosted on a web server provides access to the
versioned binary packages of the project external
dependencies. In the same way the CPAN [7] repository
for Perl modules has been included. The set of the CVS
repository, the web-based repository and CPAN forms
together a consistent and reproducible infrastructure for
software storage and versioning.

QUALITY GUIDELINES
One of the major requirements of the gLite project is

the enforcement of quality assurance guidelines. Quality
spans from naming conventions to coding guidelines for
all the languages used in the project (Java, C, C++ and
Perl), from unit tests to test coverage and metrics
collection and reporting.

Most of the quality guidelines have been enforced by
introducing in the SCM system and the Build system a set
of automated checks and default targets that are
consistently applied to all components (CVS modules) of
the project.

The source code is verified for compliance using a
number of tools, such as Jalopy [8] for Java, CodeWizard
[9] for C/C++ and PerlTidy [10] for Perl. Whenever a
developer commits code to CVS, the rules are applied and
the developers are sent an e-mail message with the result
of the analysis. Commits can be allowed or prevented
depending on the status of the project and the current
policies. However, it is important in this case to keep the
process and the actual checks light enough, so that they
do provide a useful service and do not annoy the
developers, tempting them not to commit new code for
long period of time.

In the same way, during private code builds the code is
checked for compliance, so that developers can
immediately see what changes may be necessary.

Unit tests and coverage analysis are performed on all
components during the builds using tools such as JUnit
[11] and CppUnit [12] for the unit tests and Clover [13]
and gCov [14] for the coverage analysis.

All quality checks reports together with a number of
software metrics about code size and size stability,
complexity, fragility and so on are collected during the
build in a common directory for further publication to the
gLite project server.

THE BUILD SYSTEM
As previously mentioned, the build system must satisfy

a complex set of requirements about its platform and
language independence, flexibility and extensibility. In
addition, the system must be able to run in the same way
on central build servers to produce reference builds and
on the developers’ computers for local integration tests.

To achieve such goals the build and private build
patterns have been implemented using a platform-
independent, Java-based build engine called Ant [15]. In
addition, a set of extensions has been developed in Java or
Ant xml scripts to abstract the more platform-specific
tasks into generic platform-independent commands.

The core of the build system is made of a set of xml
scripts and properties files for the Ant system stored in a
module in CVS called the system module. In order to run
the build it is enough to have Ant installed and check the
system module out of the CVS repository. This approach
allows performing easily the same build process on the
servers and on individual development computers. In
addition, with small exceptions, the entire system works
on all platforms where Java is supported, making it easy
to port the build system to other platforms and thus
satisfying the platform independence requirement.

The general structure and behaviour of the project CVS
modules have been specified in the project SCM Plan in
order to enforce homogeneity across the entire project. In
particular the directory structure and a number of default
targets have been defined in the project SCM plan. All
components are required to comply with this basic set of
rules in various ways depending on the language and
build tools used.

The agreed common build process and the build

Figure 1: The system 3-tier structure

configurations are implemented in the files of the system
module. All other modules are organised in a 3-tier
hierarchical structure (system-subsystem-component) and
import the common files, therefore sharing the same
process and configurations (see Fig. 1).

In order to satisfy the language independence
requirement and still be able to run a build of all the
different components using the common configurations,
the concept of target wrappers has been introduced. Each
module in the project can be developed in any one of the
supported languages using the appropriate build tool (Ant
for Java, make and Autotools for C and C++, Perl
makefile.PL, etc.). The target wrapper files exports the
standard common targets defined by the SCM Plan, but
have a different implementation of such targets depending
on the underlying module language and build tool. For
example, for Java the implementation is a native sequence
of Ant tasks to perform initialization, quality assurance
checks, compilation, unit testing, etc. For C++ on the
other hand, the implementation may consist in a set of Ant
commands that delegate the equivalent operation to
autoconf, automake and make.

Special scripts have been provided to create and add to
the hierarchy new subsystems and components, providing
the users with preconfigured stubs of the required Ant xml
files and easing the task of importing existing components
into the system.

The system can easily be extended to other languages
and build tools by providing a target wrapper file with the
common interface and an appropriate implementation.

An additional pattern, the stage area, is used to
facilitate dependency resolution within a workspace
without the need for installing software or setting
environment variables and allowing multiple workspaces
to coexist on the same computer for parallel development
or maintenance. All modules install their build products
(binaries, libraries, etc) in a common area in the
workspace and are configured to look for dependencies in
this area during the build.

THE CONTINUOUS INTEGRATION
LOOP

The continuous integration loop pattern is the core of
the rapid development process of gLite. One of the major
shortcomings of large distributed projects is the lack of
integration until very late in the lifecycle and a final ‘big
bang’ phase of frenetic troubleshooting. The continuous
integration loop avoids this problem by continuously
building, integrating and smoke testing all project
components.

In the gLite system the software is built incrementally
every 60 minutes. Whenever a problem is found, the
developers who committed changes since the last

Figure 1: CruiseControl build results andgLite package list

successful build are notified of the problem by means of
an e-mail message containing a pointer to a web interface
to the build reports.

All problems are therefore found within minutes of the
introduction of a change and can be immediately fixed,
keeping the entire code base healthy. Also in this case
special care should be taken in setting reasonable
notification policies. If the notifications are too frequent,
developers may either be tempted not to commit their
code frequently in fear of receiving too many build failure
messages, or could ignore the messages altogether.

Additional nightly builds and weekly integration build
are also run to produce tagged baselines of the code base.

The gLite loop is implemented using a product called
CruiseControl [16]. CruiseControl is essentially a
scheduling and reporting engine on top of Ant. It can be
used to schedule any number of builds at regular intervals
or at given times and to optionally collect and publish
build artifacts and reports to a common web application
running in Tomcat.

Although CruiseControl was mainly designed for Java
software development, it was rather straightforward to
adapt it to the gLite build system that already uses Ant for
a variety of languages and build tools. In addition, it is a
Java application and therefore satisfies the platform
independency requirement of the project.

PACKAGING AND DISTRIBUTION
All components of the gLite project are required to be

packaged in a variety of formats, namely source tar balls,
binary tar balls, RPMs for RH Enterprise 3 and binary
compatible distributions like Scientific Linux and CentOS
and MSIs for Windows.

In order to maintain the consistency of the system and
set correct dependencies between RPMs and MSIs sets, a
packaging engine has been developed and integrated with
the build system.

The packaging tasks are defined as one of the default
mandatory targets for all modules. Source and binary tar
balls are created for all components using the same
procedure. RPMs and MSIs package creation is abstracted
in a packaging target developed in Java as an extension of
the standard Ant tasks.

The specification files for RPMs and MSIs are
generated automatically by default by the packaging
engine harvesting information from the build system
configuration files. This information includes for example
the list of dependencies between packages. If more
specific tailoring is required, preinst, postinst, preun and
postun scripts can be used. If necessary the entire spec file
can be provided by the component developer to override
the automatic spec file generation.

All packages are produced as part of the continuous
integration builds and the nightly and weekly builds. The
packages produced for nightly and weekly builds are then

automatically copied to the gLite web site [5] for
distribution together with the build and QA reports.

CONCLUSIONS
In this paper a pattern-based framework for continuous

integration and quality assurance of a large distributed
software development project has been presented.

After the first four months of practical applications both
advantages and disadvantages have been noticed.

In particular the rate of the continuous integration loop
has to be carefully balanced between the need for finding
problems as early as possible and avoid flooding the
developers with build error notifications. In addition, the
enforcement of a software process and quality assurance
procedures in the build system must be balanced against
the need for flexibility and rapid prototyping to avoid
killing the process itself.

However, the benefits of the application of the system
are clearly emerging, most notably a better integration of
diverse component on multiple platforms, faster problem
tracking and resolution and a general improvement in the
quality of the software compared to other similar projects
in which the authors have taken part.

ACKNOWLEDGEMENTS
This work has been funded by the European

Communities under contract INFSO-RI-508833. The
paper has been written thanks to and on behalf of the
gLite Extended Integration Team.

REFERENCES
 [1] E. Laure, et al., Middleware for the Next Generation

Grid Infrastructure, proceedings of the CHEP 2004
conference (2004)

 [2] C. Alexander, S. Ishikawa, M. Silverstein, A Pattern
Language: Towns, Building, Construction, Oxford
University Press (1977)

 [3] E. Gamma, et al., Design Patterns, Addison-Wesley
Professional; 1st edition (January 15, 1995)

 [4] S.P. Berczuk and B.Appleton, Software
Configuration Management Patterns, Addison-
Wesley Pub Co; 1st edition (November 4, 2002)

 [5] http://www.glite.org
 [6] https://www.cvshome.org
 [7] http://www.cpan.org
 [8] http://jalopy.sourceforge.net
 [9] http://www.parasoft.com
[10] http://perltidy.sourceforge.net
[11] http://www.junit.org
[12] http://cppunit.sourceforge.net
[13] http://www.cenqua.com/clover
[14] http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
[15] http://ant.apache.org
[16] http://cruisecontrol.sourceforge.net

