
DESIGN AND IMPLEMENTATION OF A NOTIFICATION MODEL
FOR GRID MONITORING EVENTS∗

S. Andreozzi, , G. L. Rubini, INFN-CNAF, Bologna, Italy
Sergio Fantinel, Lab. Naz. di Legnaro, Legnaro, Italy

N. De Bortoli, G. Tortone, INFN, Napoli, Italy
Abstract

Grid systems involve a large number of users and re-
sources across traditional administrative and organizational
domains. An aspect to consider as regards the monitoring
activity of such systems is the efficient match and deliv-
ery of notification events to subscribers. In this paper, we
propose a notification model for events that relies on recent
evolution in XML document filtering. We also propose a
design implementation in the context of the GridICE mon-
itoring tool.

INTRODUCTION

The Grid monitoring is the activity of measuring significant
Grid resource-related parameters in order to analyze usage,
behavior and performance of a Grid, and detect and notify
fault situations and user-defined events. In this context, we
have proposed a tool called GridICE [1] designed to fulfil
a number of requirements that are specific of Grid systems.

Its architecture already contains by design a notification
service for monitoring events. In the current GridICE im-
plementation (version 1.6.2), such a service is implemented
with basic capabilities, i.e., the sending of e-mail notifica-
tions to persons or group can be configured for a set of
predefined events.

In this paper, we present a new design of the notifi-
cation service that enhances the current one by provid-
ing (1) an expressive subscription language, (2) aggregated
notifications, (3) efficient matching between subscriptions
and events, (4) customizable notification frequency (5) and
asynchronous notification delivery. The proposed solution
gains from the recent evolutions in the area of XML docu-
ment filtering.

OVERVIEW OF GRIDICE

In this section, we provide an overview of GridICE [1].
This monitoring tool has been initially developed by the
INFN (Istituto Nazionale di Fisica Nucleare) as part of the
European DataTAG project. It has been later integrated in
the LHC Grid Computing middleware version 2 [7].

The GridICE architecture is modular and structured in
five layers (see Figure 1). The first layer is the Measure-
ment Service that probes the resources for simple or com-
posite metrics. The set of collected metrics are an extension

∗This research was partially funded by the IST Program of the Eu-
ropean Union under grant IST-2003-508833 (EGEE project) and by the
Italian Grid.It project

of the GLUE Schema [3], i.e., a common definition of en-
tities and attributes that is the result of a joint collaboration
between large European and American Grid projects.

The second layer is the Publisher Service that offers the
gathered data to potential consumers. Monitored data are
locally collected in an edge node that have access to the
Internet. The monitored data are exposed through a com-
mon interface, that in the current version is provided by the
Globus Monitoring and Discovery Service (MDS) version
2 [6].

The third layer is the Data Collector Service that allows
for the collection of historical monitoring data. Its main
components are the New Resources Detector, the Scheduler
and the Persistent Storage. The first acts periodically in
order to detect new sources of data to be observed. Given
a new set of sources of data, the Scheduler fires periodical
observations to discover which monitored data are offered
and stores the result via the Persistent Storage.

The fourth layer is the Data/Notification and Data An-
alyzer Services. The first refers to a flexible and config-
urable means for event description, detection and notifica-
tion and is the focus of this paper. The second is the Data
Analyzer Service that provides performance analysis, us-
age level and general reports and statistics.

The fifth and last layer is the Presentation Service that
offers a web-based graphical user interface. The monitored
data are aggregated depending on the type of the consumer
(e.g., VO manager, Site manager, GOC administrator).

Figure 1: Layered Architecture



NOTIFICATION SERVICE
REQUIREMENTS

In the introduction, we have mentioned that the notifica-
tion service currently implemented within GridICE pro-
vides basic capabilities, as it offers only the notifications
of a predefined set of events (e.g., disk space depletion, i-
node availability lower than a certain threshold, transition
of a process from down to up and vice versa).

The growing interest for more flexible and scalable noti-
fication capabilities from LHC (Large Hadron Collider) ex-
periments has led us to study a more suitable solution satis-
fying their needs. The following set of requirements were
inferred after to have investigated a number of use cases:
(1) enable each final user to define the precise set of events
it is interested in receiving; (2) final user should be able to
add and delete notification requests; (3) the service should
aggregate the information about all the events occurring at
Grid level and matching his specifications, in order to pro-
vide final users with the possibility to receive unified no-
tification; (4) final users should choose the frequency with
which receives notifications (e.g., daily, hourly); (5) asyn-
chronous notification delivery.

Message-oriented systems represent an appealing solu-
tion as the communication paradigm of the notification ser-
vice. Moreover, the flavor of publish/subscribe family in-
cludes event driven mechanisms and distribution of data
functionality regardless who or where the recipients are.

Publish/Subscribe Systems: Overview

In publish/subscribe systems, components interact by pub-
lishing messages and subscribing to classes of messages.
The main components are: publisher(s), subscriber(s), bro-
ker. Publishers and subscribers exchange messages trough
the broker without having reciprocal knowledge: publish-
ers connect to the broker in order to publish events into the
network, while subscribers connect to the broker in order
to register their preferences, in which they specify, via se-
lection criteria, the set of messages they are interested to
receive. Published messages are named events, while sub-
scribers preferences are named subscription.

The broker should match events with subscriptions, de-
livering the message of interest to all (and only) the sub-
scribers. Two important considerations regard the type of
subscriptions supported by a publish/subscribe system and
how such system matches events against subscription. A
publish/subscribe system can be classified as:

• topic-based: a subscription can selects events choos-
ing a specific topic from a predefined set of available
topics.

• content-based: a subscription can specify predicate
over the content of the events.

The matching between events and registered subscriptions
is based on a filter algorithm implemented by a component
named filter engine: due to the filter capabilities, a sub-

scriber will only receive messages satisfying his expressed
criteria.

A filter engine is required of (1) execute matching events
with subscriptions; (2) expressivity for language used to
define subscription criteria; (3) handle very large number
of subscriptions; (4) to be able to add and remove subscrip-
tions.

Filter Engine: XML filtering and YFilter

The XML (Extensible Markup Language) is used world-
wide for representing and exchanging data. In recent years,
a growing interest has been directed to the filtering and
content-based routing of XML data. In an XML filtering
system, events are represented by XML documents while
subscriptions are expressed in a language (e.g., XPath or
XQuery) able at specifying constrains over both structure
(path expressions) and content (value-based predicates).
Matching between events and subscriptions is a two-steps
process: structure matching and predicates processing. A
number of XML filtering algorithms and implementations
have been proposed. Within the design of the new GridICE
notification service, the adopted filter engine is YFilter [5],
that evaluates path expressions and predicates over stream-
ing XML data, via a Nondeterministic Finite Automata
(NFA).

YFilter represents an evolution of the XFilter project,
where filtering of path expressions over streaming XML
data was based on the use of indexed Finite State Machine
(FSM): elements of a path expression are mapped to states;
a transition from an active state succeeds when an element
is found in the event that matches that transition; if an ac-
cepting state is reached, then the event satisfies the sub-
scription. While in XFilter each path expression is related
with a FSM, YFilter combines multiple subscriptions into a
single NFA, merging common prefixes of the subscription
paths and reducing the number of states needed to represent
a set of subscriptions.

In YFilter, path expressions are expressed using a subset
of XPath and are composed of a sequence of location steps.
A location step consists of an axis, a node test and zero or
more predicates. An axis is used to specify the hierarchi-
cal relationship between the nodes (the focus is on parent-
child and descendent-or-self relationship); the node testis
typically a name test that could be an element name or a
wildcard operator ’*’; the predicates are filters over node-
test. Path expressions specified by XPath can be trans-
formed into regular expressions for which exists an FSM
that accepts the language described by the expression. The
combined NFA representing the set of subscriptions should
(1) identify the exact language defined by all path expres-
sions; (2) when an accepting state is reached, it outputs
all subscriptions accepted at this state. Figure 2 depicts an
example of an NFA referred to eight queries. A circle de-
notes a simple state, grey circle denotes a shared state and
crossed circle denotes an accepting state, marked by the
IDs of accepted subscriptions.



Figure 2: YFilter NFA and subscription examples

Each edge represents a transition and is labeled with the
symbol that fires that transition. The symbol ’*’ matches
any element; the symbol ’ε’ is used to mark a transition
that requires no input (empty input transition). The NFA
construction in YFilter is an incremental process and new
subscriptions can easily be added to an existing system.

The execution of the NFA is event-driven: when a new
XML document is received for filtering, firstly it is parsed.
The start or the end of an XML element triggers a tran-
sition in the NFA. As introduced, subscription specifica-
tions could include value-based predicates on the elements
of path expressions: they are applied to address attributesor
text data of those elements. YFilter proposed two alterna-
tive methods for value-based predicate processing: Inline
and Selection Postponed (SP). With the first method, the
value-based predicates are processed as soon as the relevant
state is reached during structure matching. This approach
requires predicates to be stored with their corresponding
states. In the SP approach, only when an accepting state
is reached all the value-based predicates are applied for
the corresponding matched subscriptions. In this last case,
predicates can be stored on a query-by-query basis.

A NOTIFICATION SERVICE
ARCHITECTURE

This section provides a general overview of the notification
service architecture that we propose (see Figure 3). The
general architecture is depicted in figure.

The notification service architecture is based on the pub-
lish/subscribe system model and consists of four modules:
Publisher, Subscriber, Filter Engine, Notification Manager.
Events are related to information stored in the GridICE
central database. Subscriptions, as described for pub-
lish/subscribe systems, contain user selection criteria.No-
tification messages about events satisfying one or more
subscriptions related to a user, can be aggregated and a
document containing details about events and matched sub-
scription is produced. Such a document is named report.

Publisher Module

The purpose of this module is to provide events that drive
the filtering algorithm as described in YFilter. According to
the different levels of abstraction in a Grid system (e.g., VO
level, Site level and operations domain level), several kind
of XML views are periodically generated. Each XML view
is an abstraction of the information present in the monitor-
ing data collection. This is decomposed in a set of elemen-
tary XML documents that are sent to the filter engine.

Subscriber Module

This module is responsible for the management of the sub-
scriptions and offers a web-based graphical user interface
in order to enableuser registrationandsubscriptions defi-
nition. During the user registration, information about user
identity are gathered: unique ID and a default profile are
assigned. For each subscriber, the service could aggre-
gate information about events and matched subscriptions.
The user profile contains the definition of the delivery fre-
quency, that is the minimum interval between two notifica-
tions related to his subscriptions. The user is able to mod-
ify its profile. The service has no limit about the number of
users supported.

The subscriptions definition is graphically driven and
users have no view about the XPath representation of their
subscriptions. Users are able to: (1) add and delete sub-
scriptions: there is no limit about the number of subscrip-
tion that can be defined; (2) choose to be notified with a sin-
gle notification about a matched subscription: notification
message contain only detailed report about events match-
ing that subscription (such subscription has a customizable
delivery frequency associated); and (3) stop multiple noti-
fications about the same events by using an acknowledge-
ment message.

The service notifies users about the change of state of
one or more subscriptions; we say that a subscription
change its state from unmatched to matched status when
one or more events satisfying its selection criteria are gen-
erated. Vice versa, a subscription change its status from
matched to unmatched when the current set of generated
events does not contain anymore events satisfying its se-
lection criteria. Notifications for the last kind of transition
can be enabled by users that want to relate subscriptions to
a critical state and enable notifications of restored states.

Filter Engine Module

The Filter Engine is based on YFilter implementation; its
input are: (1) XML events generated by Publisher module
and driving the filter mechanism (each event is processed
only one time); (2) Subscriptions, expressed by XPath and
used to build the NFA. The Filter Engine outputs a set of
filtered events matching some subscriptions. Each events is
linked to matching subscription(s) and subscriber identity.



Figure 3: Architecture

Notification Manager Module

This module is responsible to send notifications to the sub-
scribers. It is based on a synchronous process that operates
on the set of Filtered Events from the Filter Engine module
and (1) identifies involved users, (2) aggregates matched
events and subscriptions, (3) composes notification reports
accordingly to users profile and subscriptions properties,
(4) sends notification messages to involved users.

DESIGN OF A PROTOTYPE
IMPLEMENTATION

The design of the new notification service is modular and
easy to integrate in the GridICE monitoring tool. In par-
ticular, recent evolution in the upper layers of GridICE en-
vision the generation of XML-based views of monitoring
data following the Presentation-Abstraction-Control design
pattern [4]. This means that a small effort is needed in order
to have the publisher service (see Figure 3).

The filter engine, the subscriber and the notification
manager have to be developed. As regards the first one, a
complete description of the algorithm is given in the YFil-
ter literature. We plan to develop all these components our-
selves.

The new notification service will interface with GridICE
only in the XML views of data and in the presentation layer,
for the management interface.

CONCLUSION

In this paper, we have described the design of a more flexi-
ble and scalable notification service for the GridICE Mon-
itoring Service. The proposed work improves the current
notification component by satisfying a wider number of

identified requirements, adding new features and taking ad-
vantage of the rich semantic and structural information of-
fered by XML data representation. It is important to under-
line that the proposed solution is suitable for all scenarios in
which a message Broker plays a key role in the exchange of
information (e.g., broker matchmaking and content-based
routing).

REFERENCES

[1] S. Andreozzi, N. De Bortoli, S. Fantinel, A. Ghiselli, G.L.
Rubini, G. Tortone, and C. Vistoli. GridICE: a Monitoring
Service for Grid Systems. To appear in Future Generations
Computer Systems (FGCS) Journal. Elsevier.

[2] S. Andreozzi. GLUE Schema Implementa-
tion for the LDAP Model. INFN Techni-
cal Report INFN/TC-04/16. 30 Sep 2004.
http://www.lnf.infn.it/sis/preprint/pdf/INFN-TC-04-16.pdf

[3] GLUE Schema - Resources
http://www.cnaf.infn.it/∼sergio/glue

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture, Volume 1:
a System of Patterns. Wiley. 1996.

[5] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer.
Path sharing and predicate evaluation for high-performance
XML filtering. ACM Transactions on Database Systems
(TODS). Volume 28, Issue 4. December 2003.

[6] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman.
Grid Information Services for Distributed Resource Sharing.
Proceedings of the 10th IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), San
Francisco, CA, USA. Aug 2001.

[7] LHC Computing Grid Web Site. http://lcg.web.cern.ch/LCG/


