
DISTRIBUTED TESTING INFRASTRUCTURE AND PROCESSES FOR
THE EGEE GRID MIDDLEWARE

D. Bosio, D. Collados, L. Guy, M. Reale, M Theile, CERN, Geneva, Switzerland
D. Groep, D.Salomoni, J. Templon, NIKHEF, Amsterdam, The Netherlands

S. Traylen, CCLRC, RAL, Oxon, UK
Abstract

Extensive and thorough testing of the EGEE middleware
is essential to ensure that a production quality Grid can be
deployed on a large scale as well as across the broad range
of heterogeneous resources that make up the hundreds of
Grid computing centres both in Europe and worldwide.

Testing of the EGEE middleware encompasses the tasks
of both verification and validation. In addition we test the
integrated middleware for stability, platform independence,
stress resilience, scalability and performance.

The EGEE testing infrastructure is distributed across
three major EGEE grid centres in three countries: CERN,
NIKHEF and RAL. As much as is possible the testing pro-
cedures are automated and integrated with the EGEE build
system. This allows for continuous testing together with
the incremental daily code builds, fast and early feedback
to developers, and for the easy inclusion of regression tests.

INTRODUCTION

The objective of the testing of the EGEE Middleware
Re-engineering and Integration Research Activity is to dis-
cover and report as many bugs and deficits in the gLite
middleware as is possible prior to release to the Grid Oper-
ations Activity, SA1. To this end, the testing activity will:

• Test all middleware components that form part of the
integrated middleware system to ensure a production
quality release that fulfills the requirements of the ap-
plications,

• Assess that all software requirements have been cor-
rectly and completely implemented and are traceable
to system requirements,

• Test the integrated software for scalability, platform
independence and stress resilience.

The testing activity is distributed across across three ma-
jor EGEE sites: CERN, NIKHEF and RAL. Such a dis-
tributed environment is considered essential to ensure that
assumptions valid at only one site have not been made.
Three sites is considered the minimum required to test all
the basic Grid functionality.

This paper describes the scope of the gLite middleware
testing, the testing infrastructure and procedures used.

GLITE TEST SCOPE

The gLite middleware follows a Service Orientated Ar-
chitecture (SOA), as described in detail in [4], [5]. The

various services and components are initially made avail-
able individually together with installation and user guides
and are tested independently. Full system testing is car-
ried out after some initial successful individual component
based testing.

The testing of the gLite middleware is based on and is
driven by the requirements, specifications and interfaces
described in [5], [6], [8], [9], [10]. Table 1 lists all the
gLite services and components that are tested, organized
according to service decomposition.

Table 1: gLite services and components that are tested.
Services Components
Information and Monitoring Producer Service
(R-GMA) Consumer Service
Job Management Services Computing Element

Workload Management
Data Services Storage Element

Replica Catalog
Metadata Catalog
File Catalog
Catalog services
File IO
File transfer service
File placement service

Security VOMS Server
Services with security

Access Grid Access Service
Accounting Accounting HLR server
Packaging Package Manager

Features of the middleware services and components that
are in the testing scope are:

• Functionality
• Security
• Performance
• Error handling and recovery
• Installation, configuration, upgrade and uninstallation
• Public user interfaces
• Conformance to API specifications and schemas
• Various deployment and configuration scenarios
• System resilience
• Platform independence

Features of the middleware services and components that
are not in the testing scope are:



Figure 1: The distributed gLite testing infrastructure.

• Application servers (Tomcat, Oracle, etc)
• External Grid toolkits (Globus, VDT, LCG, etc)
• Condor, PBS and other scheduling and batch systems
• LDAP servers and databases (MySQL, Oracle)
• Network infrastructure
• Underlying fabric infrastructure and management sys-

tems (Quattor, etc)
• Underlying storage systems (Castor, HPSS, dCache,

etc)
• Application specific metadata catalogues
• Conformance to standards (WSDL, WSI, etc)
• SRM interface

The various Mass Storage Systems underlying a Storage
Element will exhibit different errors, failures or latencies.
These aspects of the Mass Storage System are not tested.
Metadata catalogs that are application specific are not con-
sidered part of the core gLite middleware and are not tested.
The SRM interface, to be adopted as an interface to all Stor-
age Elements, is considered to be an external dependency
and is not explicitly tested.

THE DISTRIBUTED TESTING
INFRASTRUCTURE

A schematic of the distributed testing testbed, showing
the VO specific and site specific gLite services to be de-
ployed at each site is given in figure 1.

The gLite middleware is developed and tested on two
platforms, referred to as the main deployment platform and
the secondary platform respectively. The main deployment
platform is any binary compatible version of Redhat Enter-
prise Linux 3.0 with gcc 3.2.3 and the secondary platform
is Windows XP Server 2003 with icc8.0. The CERN site

runs Scientific Linux CERN 3.0, NIKHEF runs CentOS 3.1
and RAL runs Scientific Linux 3.0. Such a combination
of distributed platforms provides additional checks for de-
pendencies on explicit versions of external packages of the
middleware and the overall portability of gLite.

gLite middleware is extensively tested and validated on
the main deployment platform. Middleware testing on the
secondary platform is only to demonstrate that the middle-
ware can be successfully ported to another platform.

Configurations of the gLite middleware, that reflect real-
istic deployment scenarios are identified, configured and
tested. Multiple VO configurations, where two or more
VOs are configured to use the same test environment are
setup.

TEST METHODOLOGY AND PHASES

Middleware testing is performed in overlapping phases
to avoid unmanaged ad-hoc and random testing. Entry and
exit criteria are applied to each phase of the testing to de-
termine whether the system is stable enough to proceed to
the next phase of testing. Such criteria are essential to avoid
wasting time by deploying unstable baselines on the testing
testbed that have not passed basic tests.

Tagged baselines of the gLite code base produced by the
weekly integration builds, in which all unit and integration
tests are required to pass, form the basis for all regular test-
ing and validation activities. gLite components are first
tested on a component by component basis according to
the priorities set in the EGEE middleware release plan, [7]
and then the fully integrated system is tested.

The testing cycle from development through to integra-
tion and testing is shown in figure 2 together with the use
of the Savannah bug report and tracking system.



Figure 2: Testing cycle from development through to inte-
gration and testing.

Unit testing: Unit tests are written by the respective de-
velopment clusters and run as part of the build system. All
components must pass the associated unit tests to be ac-
cepted for further testing. In addition, code coverage tools
are run by the build to ascertain what percentage of code
has been covered by unit tests. Code that is not deemed to
be sufficiently unit tested may not be accepted for further
system testing.

Interface testing: The conformance of all interfaces to
the agreed architectural specifications, given in [6], is ver-
ified by linking to libraries and associated dependencies
during the build with a simple client that calls all functions.
Binaries are tested by calling all exposed public interfaces.
Erroneous output is parsed to determine if the error is due
to non compliance with the APIs

Deployment testing: Installation and configuration test-
ing is carried out on all system components without the
use of an automated tool to ensure that installation is both
correct and complete and that all installation documenta-
tion is correct. A service that can be started and responds
to a ping request is considered to have passed the instal-
lation and configuration tests. If a ping operation is not
supported some other test to verify that the service is alive
is done.If successful, the full baseline is deployed across
the distributed testing infrastructure.

Testing is carried out on all gLite packaging formats,
namely RPMS for all binary compatible versions of Red
Hat Enterprise Linux, source and binary tarballs and MSIs
for Windows. The correct installation, location of files as
defined in the developers guide [12], relocatability, unin-
stallation where appropriate, and consistency between the
different packaging formats is tested.

Deployment testing is done on a single machine to en-
sure that all sources install and configure correctly and that
the services run correctly.

All gLite components are required to be fully deploy-
able on one single machine. This requirement is primarily
to ensure that the installation of multiple services on one
machine doesn’t clash and that the number of machines re-
quired by a site to deploy gLite is not excessive.

A large number of different deployment configurations

are possible for gLite components and services. We test
various deployment scenarios in order to provide deploy-
ment recommendations for sites with limited numbers of
machines, i.e. for a site having only three machines, which
services should be deployed together on which machines.

Functionality testing Functional testing based on appli-
cation requirements and use cases is carried out on both in-
dividual gLite components and the fully integrated system
to validate gLite against system requirements.

Security testing: Focuses on issues of data access and
resource access rights to Grid services and ensures that
unprivileged users are not able to access or modify data.
Biomedical application data is highly sensitive and tests
ensure for example that members of one VO cannot access
or modify data belonging to another VO, and that VOMS
groups and roles provide the correct granularity of access
to data.

The inclusion of security in a system often has adverse
effects on a system’s performance. The performance of the
security enabled system will be measured and compared to
the non security enabled system.

Resilience testing: Covering the areas of stability, er-
ror recovery, failover and stress testing as well as test-
ing boundary conditions, such tests will identify condi-
tions at which the system or individual components break-
down. Such tests include: Submit a job storm and mea-
sure the system response in terms of job wait time and suc-
cess rate; Purposely bring down one of the system com-
ponents needed by the current job only and check whether
the whole system crashes and all jobs in the queue are lost,
or if the current job is terminated nicely and the next job
executed.

Performance testing: Ascertains whether the system or
individual components meet the system performance re-
quirements as stipulated by the user requirements, e.g. a
maximum acceptable access time for a dataset for example
or the volume of data or request rate that the system should
be required to handle. In the absence of any performance
requirements, the test team can make systematic perfor-
mance measurements and present them for acceptance to
the user community.

Portability testing: gLite components are deployed and
tested on the secondary platform and tested as part of the
whole gLite system in order to demonstrate the portability
of the gLite middleware. Given that the gLite architecture
is comprised of a set of independent services, the strategy
for testing services running on the secondary platform is
simply to configure gLite services to use certain other ser-
vices running on the secondary platform. For example, to
test WNs running on the secondary platform, we configure
one CE to execute jobs on secondary platform WNs while
leaving another CE to submit jobs to WNs running on the
main deployment platform. For R-GMA we deploy servlet
nodes at each site on the secondary platform and have them
publish and consume information from an Information Cat-
alogue running on the main deployment platform.



DEFECT REPORTING AND TRACKING

The Savannah bug reporting system provided by CERN
is used for reporting and tracking defects found in the test-
ing process. Figure 3 shows the process of tracking bugs.

Figure 3: Life cycle of a gLite bug.

Bugs identified either by the test team or any other users
are registered in Savannah specifying a severity and prior-
ity. The bug is assessed by the Change Control Board and
if accepted is assigned to a development team. When a de-
veloper has fixed a bug, the bug status will be changed to
Ready for Integration and committed. If the subsequent in-
tegration including unit and interface tests are successful,
the bug status is changed to Ready for Testing. The new
baseline is deployed on the distributed testing testbed and
the fix is tested.

TEST REPORTING

We have defined XML Schemas for the output of all
tests. The output format of some testing varies depending
upon the test objective. Tools to convert the output of tests
to HTML and PDF format have been written and incorpo-
rated into the testing process to automatically publish test
results upon test completion on the JRA1 web site.

CONCLUSIONS AND FUTURE WORK

In this paper we have presented the testing infrastruc-
ture, scope and strategy for the gLite middleware as well as
outlining the defect tracking and test reporting system.

We have successfully deployed a distributed testing
testbed for the gLite middleware and are currently deploy-
ing and testing individual components as they are released
into testing. we are developing test suites that will be pub-
licly released.

We are currently investigating two automatic testing
frameworks within which all gLite tests could be run. The
advantages of such frameworks are that they can be used
to set up functional test dependencies, establish a hierar-
chical structure or possibly facilitate testing Grid jobs that
will run over a long period of time.

ACKNOWLEDGMENTS

We would like to acknowledge the contributions to the
EGEE middleware testing activity of the following people:
S. Burke, M. Barroso Lopez, M. Begin, O. Koeroo

We would also like to very gratefully acknowledge the
assistance of Rosy Mondardini in producing the CHEP
poster associated with this paper.

REFERENCES

[1] EGEE JRA1. EGEE Configuration Manage-
ment Plan for EGEE Middleware, July 2004,
https://edms.cern.ch/document/446241

[2] EGEE JRA1 Test Team. EGEE Software Testing and Vali-
dation, Middleware Test Plan , EGEE Milestone MJRA1.3,
August 2004, https://edms.cern.ch/document/473264

[3] A. Di Meglio et. al. A Pattern-based Continuous Integration
Framework for Distributed EGEE Grid Middleware Devel-
opment , In Proceedings CHEP04, September 2004.

[4] E. Laure et. al. Middleware for the Next Generation Grid
Infrastructure, In Proceedings CHEP04, September 2004.

[5] EGEE JRA1. EGEE Middleware Architec-
ture. EU Deliverable DJRA1.1, July 2004,
https://edms.cern.ch/document/476451

[6] EGEE JRA1. EGEE Middleware Design.
EU Deliverable DJRA1.2, September 2004,
https://edms.cern.ch/document/487871

[7] EGEE JRA1. EGEE Middleware release plan, September
2004, https://edms.cern.ch/document/468699

[8] F. Carminati et. al. HEPCAL Prime, Common Use Cases for
a HEP Common Application Layer, http://cern.ch/project-
lcg-gag/LCG GAG Docs/HEPCAL-prime.pdf

[9] EGEE JRA3. Security User Requirements, July 2004,
https://edms.cern.ch/document/485295

[10] EGEE NA4. Requirements database, September 2004,
http://egee-na4.ct.infn.it/requirements/

[11] EGEE SA1. EGEE SA1 Requirements, September 2004,
https://edms.cern.ch/document/456865

[12] EGEE JRA1 Developers Guide, September 2004,
https://edms.cern.ch/document/468700


