
EVOLUTION OF LCG-2 DATA MANAGEMENT

J-P. Baud, J. Casey, CERN, Geneva, Switzerland

Abstract
The LCG-2 middleware was used in the spring 2004

data challenges by all four LHC experiments. This
produced the first useful feedback on scalability and
functionality problems in the middleware, especially with
regards to data management.

In light of the feedback from the data challenges, and in
conjunction with the LHC experiments, a strategy for the
improvements required in the data management area was
developed. The aim of these improvements was to allow
both easier interaction and better performance from the
experiment frameworks and other middleware such as
POOL.

In this paper, we will cover the problems and issues
highlighted by the data challenges, as well as the required
improvements to allow LCG-2 to handle effectively data
management at LHC volumes. In particular, we will
highlight the new and improved services provided.

EXPERIMENT FEEDBACK FROM DATA
CHALLENGES

The data challenges in 2004 was the first real
experiment production use of LCG-2. During the course
of the data challenges, many issues and problems were
exposed that had not shown up before in more limited
tests. The deployment, service and development teams
worked closely with the experiments to understand these
issues. Some of the problems were solved during the data
challenges, with new versions of software being deployed
in agreement with the experiments during the data
challenge. Other problems required more work to resolve,
and indeed some exposed fundamental problems with the
middleware as deployed in LCG-2.

The problems within the data management software can
be broken down into two main areas - performance
problems and missing functionality.

Performance Problems
The EDG Data Management tools [1] were mainly

written in Java, both on the client and server side. Indeed,
although some C++ APIs were provided for the Local
Replica Catalog (LRC) and Replica Metadata Catalog
(RMC), the command line tools for the catalog were in
Java. This lead to large start up overheads on the client
side, that meant the command line tools, while useful for
interactive work, were effectively useless for production
usage.

Also, the EDG Replica Manager, a pure client-side
application, was written in Java. The slow start up times,
along with the lack of support for bulk operations, again
meant that it was often too slow for production usage.

The catalog servers also showed performance issues.
There were issues with missing indexes on some columns
in the database, and some common but expensive queries

that needed to be cached on the server. The rest of the
server performance problems were due to missing
functionality and architectural problems, described in the
next section.

Missing functionality
The EDG catalogs were designed with a flat logical

namespace. This meant that the only effective way to
select subsets of the Logical File Name (LFN) namespace
was via wildcards (e.g. 'lfn:/foo/*'). This did not scale,
since it implied a full table scan of the database table
which held the logical file names. Also, due to the
stateless nature of the Web Service interface, queries
which returned a large number of result which had to
'paged' through, required the same query to be run on the
database backend many times (in fact it is run once per
‘page’ of results). This multiplied the load on the
database significantly.

Additionally, the catalogs did not provide user-
controllable transactions to the user applications. This
meant that any rollback of a partially successful multi-file
operation had to be carried out manually by the user
application.

Problems were also seen in replication of files,
especially files used by many jobs on different worker
nodes. Since the replication tools had no way of tracking
the state of ongoing transfers, some files would be
transferred many times to the same site by concurrent
jobs.

Finally, there was no managed storage solution in
LCG-2 - The EDG 'Classic SE' was the standard storage
element. The 'Classic SE' is a gridftp server, with some
metadata stored in the information system which defines
mount points for different Virtual Organisations (VO) in
the file system. This had scaling problems since all
requests to a storage element go through a single machine
running a single gridftp server.

GFAL AND LCG_UTIL
The Grid File Access Library (GFAL) originally was

introduced into the LCG middleware as a low-level IO
interface to Grid Storage, specifically Storage Resource
Managers (SRM) [2]. It is written in C, and provides a
set of POSIX like methods for file system interaction. In
order to interact with grid storage, it also needed to
interface with the EDG grid catalogs (LRC & RMC) as
well as the grid information system.

 Once we had a requirement to replace the replica
management tools, GFAL was a good base for the
development. The solution took the form of a set of
command line tools, collectively referred to as 'lcg_utils',
which provided the same command line arguments and
functionality as the Replica Manager. The same

functionality was also provided as a C API for direct
integration into experiment tools.

GFAL (and thus lcg_utils) was extended to
communicate with other storage element types, such as
the EDG 'Classic SE' and the EDG Storage Element,
deployed as an interface to the Atlas Data Store (ADS)
RAL.

During the data challenges, experiments asked for extra
features in the replica management tools. These were
generally added only to lcg_utils, which now has a richer
feature set than the EDG replica manager, as well as
better performance. GFAL and lcg_utils are still being
actively developed; for instance we have recently released
a thread safe version at the request of the ATLAS
experiment.

LCG FILE CATALOG
The main lesson from the data challenges was that the

catalogs deployed in LCG-2 did not meet either the
performance or functionality requirements of the
experiments. Thus it was agreed to upgrade the catalogs
in LCG-2, as an interim measure in order to allow
experiments to carry out future intensive work using
LCG-2. The aim was to undergo a rapid development and
deployment cycle, in order to quickly provide a short-
term solution to the experiments.

The catalogs are based on an existing and mature code
base, and supports both Oracle and MySQL as database
components. The main improvements that the new
catalogs have over the EDG catalogs are:

• Cursors for large queries, reducing database load
• Timeouts and retries are implemented in the

client. This reduces the impact of momentary
loss of contact to the service for remote sites

• There is a user exposed transaction API. This
allows the experiment frameworks to explicitly
rollback transactions, as well as transactions
rolling back automatically on error

• A true hierarchical namespace is provided on
Logical File Names along with the
corresponding namespace operations.

• Integrated GSI Authentication and
Authorization. There will no longer be any
insecure access to the grid catalogs. A user
certificate will be required for all interactions.

• Access Control Lists (ACLs) We provide both
standard UNIX permissions and POSIX
compliant ACLs

• Checksums are provided to aid in maintenance
of replica consistency

A prototype of the catalog has been created and
undergone functional testing. Also, integration with
GFAL and lcg_utils has been completed. Integration with
both ROOT [3] and the POOL File Catalog Interface [4]
is in progress, and will be provided during autumn 2004.

Initial performance and scalability testing is currently
underway, and is looking promising. A first version will
be deployed for certification during October 2004, with

migration of experiment data in the existing catalogs
happening in October and November 2004.

Performance Comparison
A first performance comparison with the EDG catalogs

has been carried out. The tests consisted of recording the
average insert time of a Logical File Name and GUID
with varying number of entries in the catalog, and varying
number of client threads. In the tests, the number of
server threads in the LFC was fixed at 20. The results for
the EDG catalog and the LFC are shown in Figure 1, 2
and 3.

0
5

10
15
20
25

0 200000 400000 600000

Number of entries

Ti
m

e
pe

r i
ns

er
t (

m
s)

1 thread
2 threads
5 threads
10 threads
20 threads
50 threads

Figure 1: LCG File Catalog – average insert time

0

50

100

150

0 200000 400000 600000

Number of entries

Ti
m

e
pe

r i
ns

er
t (

m
s)

1 thread

2 threads

5 threads

Figure 2: EDG Metadata Catalog – average insert time

0

500

1000

1500

0 20000
0

40000
0

60000
0

Number of entries

Ti
m

e
pe

r i
ns

er
t (

m
s)

10 threads
20 threads

50 threads

Figure 3: EDG Metadata Catalog – average insert time

We see that for the EDG catalog, the average insert
time is less than 30ms for 1 or 2 threads, but that it
degrades rapidly with both the number of entries and the
number of threads. The new catalog shows insert times of
less than 25ms for up to 50 concurrent client threads. We
note that the new catalog seems to show no degradation in
performance when we increase the number of entries in

the database. Also it scales much better with increasing
numbers of clients.

ROBUST DATA TRANSFER
The need for a highly performing and reliable data

transfer service is driven by LCG ‘Robust Data Transfer’
Service Challenge.

The aim of the Robust Data Transfer service challenge
is to prototype the data movement services that will be
needed for LHC. Many of the components that are
required exist at the current time, but have not yet been
shown to work together at the required performance and
reliability. It is important to start building up the
knowledge of how the entire system performs when
exposed to the level of usage we expect during LHC
running.

The required data transfer rates for Tier-0 to Tier-1
traffic for the LHC are large; current estimates are
upwards of 50 Gb/s in total to all Tier-1s. It is very
important that we achieve these levels well in advance of
the real data so we are sure that the system works, is
manageable and maintainable.

The project will work towards testing the interaction of
the full set of services at all levels:

• network
• disk to disk file transfer
• reliable file transfer service
• mass store to mass store file transfer
• grid components - catalog, replication tools, etc.

Initially, we will start with a simple system to test the
disk to disk file transfer systems and the reliable file
transfer service. Once this is working at the required
levels of reliability and performance, we can add in
additional components (e.g. MSS interaction). The
service will be managed and coordinated by LCG Grid
Deployment at CERN.

Status
The initial sites involved are CERN, FNAL, BNL,

NIKHEF/SARA, IN2P3 and FZK. DESY are also

interested in collaborating in the project, and have started
to set up the required infrastructure.

At CERN, the setup currently consists of, currently, 10
dual Itanium2 machines each with a 1Gb link that gets
aggregated into a 10Gb switch. From this switch we have
a 10 Gb connection to GEANT (and another 10Gb link to
Chicago). Some sites are connected directly with
dedicated bandwidth to the CERN cluster; FNAL have a
10Gb link and NIKHEF/SARA have 1Gb currently, with
the possibility of 10Gb.

Transfers will be done using gridftp, with either plain
gridftp servers or a SRM. First transfers were carried out
from CERN to Fermi in the last week of September 2004,
with the other participating sites starting transfers during
October 2004.

DISK POOL MANAGER
Recent experience and current thinking leads to using

the SRM as a common interface to storage at grid sites.
There are three distinct cases:

• Tier-0/Tier-1 sites with hierarchical MSS. These
sites usually make the integration with their own
MSS. This is currently the case at CERN and
FNAL, with CASTOR and dCache/ENSTORE
respectively.

• Large Tier-1s sites with large disk pools (10's
TBs distributed between many fileservers).
These sites need a flexible system which can
encompass many different configurations of disk
systems and transfer servers. Currently dCache
[5] provides a good solution, but it has been seen
that it needs effort to integrate and manage.

• Sites with smaller disk pools (1–10 TBs) and
with less available management effort. Currently
no such solution exists that is lightweight to both
install and manage.

In order to solve the problem for the third class of sites,
it was decided to design and develop a lightweight Disk
Pool Manager (DPM) within the LCG project. This is
complementary to dCache as a solution in LCG-2 and we

Name ServerName Server

Disk Pool ManagerDisk Pool Manager

NS DatabaseNS Database

DPM DatabaseDPM Database

DPM DaemonDPM Daemon

DaemonDaemon

quest
emon
quest
emon

r
Grid ClientGrid Client Data ServerData Server

SRM ServerSRM Server

Disk SystemDisk System

Gridftp ClientGridftp Client

RFIO ClientRFIO Client

SRM ClientSRM Client

NS NS RFIO DaemonRFIO Daemon

Gridftp Server

RFIO Client

Re
Da
Re
Da

SRM DaemonSRM Daemon

Figure 5: The architecture of the Disk Pool Manage

believe that having both available allows sites to choose
an appropriate solution their particular organisation.

Aims and Objectives
As stated above, the aim of the DPM is to provide a

managed disk solution for the small Tier-2s in LCG-2.
This implies scaling to between 1 to 10 TB of storage,
with the disk space possibly spread over several disk
servers at the site. There is a strong requirement to focus
on manageability, with the DPM being both easy to install
and easy to configure.

We also want to improve over the problems seen with
the ‘Classic SE’. This implies that we should provide
space reservation so that space on the storage element can
be reserved at the start of the job and guaranteed to be
available at the end of the job. Also important is support
for multiple replicas of a file within the disk pools, in
order to avoid ‘hotspots’ on particular disks.

Also we provide two different types of storage space –
volatile and permanent, as defined by the SRM
specification. This allows for both long term storage and
scratch space close to the worker nodes.

Manageability
In order to make the service easy to install and manage,

there are few daemons to install. An installation will
consist of

• Disk Pool Manager daemon
• Name Server daemon
• SRM daemon
• IO Daemon (e.g. gridftp, RFIOD, XROOTD)

There are no central configuration files, and disk nodes
send messages to the Disk Pool Manager daemon when
they want to add their disk to the pool. This makes it easy
to both add and remove disks and partitions to the simple.
For instance, an administrator can temporarily remove file
systems from the DPM if a disk has crashed and is being
repaired. Also, the DPM automatically configures a file
system as "unavailable" when it is not contactable

 Features
The DPM provides secure GSI authenticated and

authorized access to data via several different interfaces:
• Direct Socket interface
• SRM v1
• SRM v2 Basic

It also offers a large part of SRM v2 Advanced,
including space reservation, namespace operations,
permissions, copy and remote get/put. The I/O access to
the data itself can be done via several protocols: Gridftp,
RFIO and ROOT I/O. The overall architecture of the
DPM is shown in Figure 4.

It should be noted that the DPM allows for the
possibility of its catalog acting as a 'Local Replica
Catalog' in a distributed catalog system, without requiring
an additional local site catalog to be deployed.

INTERACTION OF LCG-2 COMPONENTS
WITH GLITE

File Catalog
The LCG File Catalog provides an immediate solution

to experiment needs for LCG-1. In order to not disrupt
ongoing experiment grid activities, the EDG Catalogs will
be migrated to LFC Catalog for LCG-2 and both systems
will be run in parallel to allow the experiments to test the
interoperability of their tools.

This migration will help the later migration to gLite,
since it will tackle how to map existing Logical File
Names into a hierarchical namespace. Alternatively, a
gLite web service interface could be provided on top of
the new catalog to allow for interoperability with both
LCG-2 and gLite data management tools.

GFAL and lcg_utils
The abstractions inside lcg_utils and GFAL allow for

easy addition of alternative components. This is seen in
that the next version will interact with both EDG and
LCG File Catalog. We believe that adding support for the
gLite catalogs should be similarly straightforward.

 Robust Data Transfer
The architecture of the transfer management system

used in the transfer challenge was created in conjunction
with gLite team. Both systems share a common database
schema for interoperability, and gLite client tools will
work with the underlying infrastructure developed for the
Service Challenge. We see the work from the two teams
is complementary - The service challenge focuses on
performance and scalability while gLite focuses on user-
visible functionality and VO policies.

Disk Pool Manager
The DPM will be used for new storage at Tier-2 level.

We will provide tools for 'Classic SE' migration. This
will only require transferring the file system metadata into
the DPM catalog. This data would then be available from
within gLite via SRM interfaces.

REFERENCES
[1] D. Cameron et al, “Replica Management in the

European DataGrid Project,” Journal of Grid Computing
2004, In Print.

[2] SRM Working Group home page.
http://sdm.lbnl.gov/srm-wg/

[3]The ROOT home page http://root.cern.ch/
[4] C. Cioffi et al, “POOL File Catalog, Collection and

Metadata Components,” CHEP 2003, La Jolla California,
March 24-28 2003.

[5] P. Fuhrmann, “dCache, the commodity cache,”
Twelfth NASA Goddard and Twenty First IEEE
Conference on Mass Storage Systems and Technologies
Spring 2004, Washington DC.

	EVOLUTION OF LCG-2 DATA MANAGEMENT
	EXPERIMENT FEEDBACK FROM DATA CHALLENGES
	Performance Problems
	Missing functionality

	GFAL AND LCG_UTIL
	LCG FILE CATALOG
	Performance Comparison

	ROBUST DATA TRANSFER
	Status

	DISK POOL MANAGER
	Aims and Objectives
	Manageability
	Features

	INTERACTION OF LCG-2 COMPONENTS WITH GLITE
	File Catalog
	GFAL and lcg_utils
	Robust Data Transfer
	Disk Pool Manager

	REFERENCES

