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Abstract 

The GeoModel toolkit is a library of geometrical 
primitives that can be used to describe detector 
geometries. The toolkit is designed as a data layer, and 
especially optimized in order to be able to describe large 
and complex detector systems with minimum memory 
consumption. Some of the techniques used to minimize 
the memory consumption are: shared instancing with 
reference counting, compressed representations of 
Euclidean transformations, special nodes which encode 
the naming of volumes without storing name-strings and, 
especially, parameterization though embedded symbolic 
expressions of transformation fields. A faithful 
representation of a GeoModel description can be 
transferred to Geant4, and, we predict, to other engines 
that simulate the interaction of particles with matter. 
Native capabilities for geometry clash detection and for 
material integration are foreseen for the near future. 
GeoModel’ s only external dependency is  CLHEP. 

INTRODUCTION 
The GeoModel toolkit provides application developers 

with a complete set of mechanisms for the description of 
large and complex detector geometries with minimal 
memory consumption.  The main purpose of GeoModel is 
to support a central store for detector description 
information that can be accessed by two main clients –  
Simulation and Reconstruction programs. GeoModel 
provides a scheme for accessing both the raw geometry of 
a detector and arbitrary subsystem-specific geometrical 
services synched to the raw geometry, while 
incorporating time-dependent alignments. 

GeoModel-based applications can build the description 
of detector geometry by reading primary numbers from a 
single database. In case the relational database schema 
allows versioning of primary numbers, GeoModel 
descriptions can also be versioned. An automatic version 
detection system has also been developed. 

In ATLAS, visual debugging tools developed with the 
use of Open Inventor toolkit complement the GeoModel 
toolkit. These debugging tools include an interactive 
Geometry Browser that allows various manipulations 
with volumes: navigation of volume hierarchy, 
iconization, printing of volume characteristics such as 
mass, shape dimensions, name and copy number. When 
used together with simulated data the Browser can also 
visualize tracks and hits on top of raw geometry. 

In this paper we describe design principles of the 
GeoModel toolkit, memory optimization techniques and 
also the mechanism of converting GeoModel description 
to GEANT4. 

DESIGN PRINCIPLES 

Material geometry 
Material geometry consists of a set of classes that bears 

a large resemblance to the GEANT4 material geometry 
classes.  These classes, however, are designed to take a 
minimal size in memory.  This requirement determines 
the basic data structure used to hold the data for the 
geometry description.  That structure is a graph of nodes 
consisting of both physical volumes and their properties 
(name, identifier, transformation in local coordinate 
system). The tree is built directly and accessed in a way 
that provides users with access to volumes and, 
simultaneously, to the properties accumulated during 
graph traversal that apply to the volumes. 

Physical volumes are the main building blocks of the 
geometry graph. The structure of a physical volume 
consists of an associated logical volume (describing just 
shape and material) and a set of child physical volumes 
and their properties. In GeoModel we distinguish two 
types of physical volumes: 

• Regular Physical Volumes, designed to be small; 
• Full Physical Volumes, designed to hold in cache 

complete information about how the volume is 
located with respect to the world volume, its 
formatted name string and other important 
information. 

When one adds a transformation in the graph, it 
changes the position of the subsequent volume with 
respect to the parent.  If one adds more than one 
transformation to the volume before adding a parent, they 
will be multiplied.  The last transformation to be added is 
applied first to the child. Like physical volumes, 
transformations come in two types: 

• Regular transformations, designed to be small; 
• Alignable transformations, which allow one to add 

a misalignment to the system.  Misaligning a 
transformation changes the position of all volumes 
“under”  the transformation and clears the absolute 
location caches of all full physical volumes. 

GeoModel includes also three mechanisms for giving 
names to physical volumes: 

1. Do nothing, the volume will be called “ANON”; 
2. Add a Name Tag object to the graph before adding 

a volume, the next volume to be added will be 
given the Tag’s name; 

3. Add a Serial Denominator object to the graph 
before adding more volumes. The volumes will be 
named according to the base name of the 
Denominator, plus given a serial number 0, 1, 2 … 



Readout geometry 
The readout geometry layer consists of geometrical 

information that is not declared directly to the tracing 
engines (GEANT4), for example: projective towers 
within a calorimeter, or the boundaries of ion implant 
layers in silicon detectors.   Information such as the 
position of the boundaries of these regions is not required 
in the simulation of basic physics processes, though it 
certainly is required in the digitization, and possibly hit-
making phase of simulation (Sensitive Detectors). 

Detector-specific geometrical services can and should 
include services that derive from the basic raw and 
readout geometry of the detector.  Such services could 
include point-of-closest-approach calculations, global-to-
local coordinate transformations, calculations that 
compute the total number of radiation lengths within a 
cell etc. 

The description of detector readout system can be 
realized with the use of Detector Elements. The detector 
element has a required association with a piece of 
material geometry (full physical volume), and has access 
to that piece. The rest of the interface – all of the 
geometrical services discussed above, such as the 

boundaries of implant layers, strip pitches, or whatever, 
can be placed in the detector element. 

Interface to Detector Description clients 
In GeoModel applications the Detector Manager 

objects play a central role in providing an interface to 
Detector Description clients. Detector Managers manage 
all raw and readout geometry and should provide a fast 
mechanism for accessing the detector elements in a 
detector-specific way. 

So in general the subsystems developers have a lot of 
flexibility, but need to devise an interface to both the 
detector manager and the detector element that satisfies 
their needs. The basic framework requires only that 

1. Special Detector Factory objects create a physical 
volume tree; 

2. They associate readout elements to certain 
physical volumes; 

3. Additional readout information appear in the 
interface to the detector manager and the detector 
element. 

MEMORY OPTIMIZATION 
TECHNIQUES 

The requirement of minimizing the memory 
consumption has led us to foresee a system in which 
objects in the detector description can be re-used. This is 
called shared instancing. It essentially means that an 
element, compound, volume, or entire tree of volumes 
may be referenced by more than one object in the detector 
description. We can list following use cases for shared 
instancing: few physical volumes can share the same 
logical volume, the same name tags and identifier tags 
can label different volumes, and the transformations can 
be used more than once in the geometry graph. 

GeoModel includes few other memory optimization 
techniques: Serial Denominators can generate name 
strings for physical volumes so that the memory does not 
fill up with nearly identifical ASCII name tags;  
tiny”  transforms (where the footprint for a simple 
translation along z, for example, is the size of one floating 

point number) reduce the size requirement for most 
transformations; finally, volumes can be parameterized 
(this mechanism is discussed in next section). 

Parameterizations 
Parameterizations are mathematical recipes for creating 

volumes. There are three main ingredients to these 
recipes: 

• GENFUNCTIONS, which are mathematical 
function-objects; they allow one to perform 
function arithmetic in the same way that one 
performs floating point arithmetic. 

• TRANSFUNCTIONS, which, together with 
GENFUNCTIONS and HepTransform3D, allow 
one to expand and parameterize elements of the 
Euclidean group (i.e., rigid body transformations). 

• Serial Transformers, a kind of GeoModel graph 
nodes, which allow a particular physical volume to 

Figure 1: Example of the usage of parameterized volumes in GeoModel application 



be placed according to a TRANSFUNCTION 
expansion of a rigid body transformation 

The example presented on Figure 1 demonstrates the 
usage of parameterizations in GeoModel applications. 

The first step is to define a GENFUNCTION. Then a 
TRANSFUNCTION is constructed, which parameterizes 
the rigid body transformation. The expansion of the 
TRANSFUNCTION is as follows. Let Xi (i = 1, 2 … N) 
represent any transformation. Furthermore, let us denote 
by fi(x) a function of a single variable. Then, the 
expansion of an arbitrary function is: 

 
T(x) = X1 

f1(x) * X2 
f2(x) * X3 

f3(x)….. Xn
fn(x) 

 

In this expression, T(x) is the resulting transformation, 
which is now a function of the single input parameter, x. 
The expansion is both simple, and completely general. A 
single term in this expansion (for example X2

f2(x)), will be 
referred to as an exponentiated transformation. 
Exponentiated transformations are simple 
TRANSFUNCTIONs, and can be composed to make 
other TRANSFUNCTIONS. The TRANSFUNCTION 
interface also allows one to compose fixed 
transformations with exponentiated transformations. 

Once one has a TRANSFUNCTION in hand, it can be 
used together with a Serial Transformer object to 
repeatedly place a physical volume. The Serial 
Transformer can then be added to the geometry graph. 
During any subsequent volume traversal, the geometry 
graph will appear to contain multiple physical volumes at 
different locations. However, only the memory of a single 
physical volume and a TRANSFUNCTION is actually 
allocated. 

INTERFACE TO GEANT4,  
GEO2G4 TRANSLATOR 

To run GEANT4 simulation of a detector described in 
GeoModel it is necessary to build a GEANT4 specific 
raw geometry based on a GeoModel description. In 
ATLAS collaboration for this purpose we have developed 
a tool called Geo2G4, which automatically translates the 
GeoModel description to GEANT4 by navigating the 
GeoModel raw geometry graph. To make the resulting 
geometry memory-efficient we have implemented a set of 
memory optimization techniques, which are applied 
during the translation: 

1. If some logical volume is shared by leaf physical 

volumes in GeoModel tree, the corresponding 
GEANT4 logical volume will also be shared. 

2. If some physical volume is shared by several 
parents in GeoModel tree the corresponding 
branch in GEANT4 tree should also be shared. 

3. There is a possibility to translate GeoModel serial 
transformers into GEANT4 parameterizations. 
This feature can be switched on/off. For this 
purpose we have developed a class 
G4STParameterisation, which can also be used in 
GEANT4 applications directly, for the purpose of 
creating G4 parameterizations without subclassing.  

G4STParameterisation objects perform volume 
parameterizations as in GeoModel, in particular with the 
use of TRANSFUNCTIONS. The code example 
presented on Figure 2 demonstrates a mechanism 
implemented by G4STParameterisation class. We believe 
that this mechanism could be of major benefit to G4 users 
whether or not they also use GeoModel. 

The Geo2G4 converter is simple and reliable tool, 
which has been used in ATLAS experiment to translate 
GeoModel descriptions of all subsystems to GEANT4 
simulation. 

Figure 2: Implementation of GEANT4 parameterisations with G4STParameterisation class 



USAGE OF GEOMODEL TOOLKIT IN 
ATLAS SOFTWARE 

The ATLAS GeoModel project started nearly two years 
ago. Since that the geometries of all ATLAS detector 
subsystems have been described using GeoModel 
mechanisms. Reference[1] describes the way in which all 
of ATLAS is described in terms of GeoModel. The 
GeoModel descriptions of tracking detectors are presently 
used for simulation part of ATLAS Data Challenge 2. 
Reference [2] describes the simulation of ATLAS and the 

operational experience in DC2. It is also planned to 
develop all subsequent versions of ATLAS detector 
(Initial Layout, Realistic Geometry etc.) with the use of 
GeoModel and recently developed Geometry Versioning 
System. 
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