
THE GEOMODEL TOOLKIT FOR DETECTOR DESCRIPTION

J. Boudreau, V. Tsulaia, University of Pittsburgh, PA 15260, USA

Abstract

The GeoModel toolkit is a library of geometrical
primitives that can be used to describe detector
geometries. The toolkit is designed as a data layer, and
especially optimized in order to be able to describe large
and complex detector systems with minimum memory
consumption. Some of the techniques used to minimize
the memory consumption are: shared instancing with
reference counting, compressed representations of
Euclidean transformations, special nodes which encode
the naming of volumes without storing name-strings and,
especially, parameterization though embedded symbolic
expressions of transformation fields. A faithful
representation of a GeoModel description can be
transferred to Geant4, and, we predict, to other engines
that simulate the interaction of particles with matter.
Native capabilities for geometry clash detection and for
material integration are foreseen for the near future.
GeoModel’ s only external dependency is CLHEP.

INTRODUCTION
The GeoModel toolkit provides application developers

with a complete set of mechanisms for the description of
large and complex detector geometries with minimal
memory consumption. The main purpose of GeoModel is
to support a central store for detector description
information that can be accessed by two main clients –
Simulation and Reconstruction programs. GeoModel
provides a scheme for accessing both the raw geometry of
a detector and arbitrary subsystem-specific geometrical
services synched to the raw geometry, while
incorporating time-dependent alignments.

GeoModel-based applications can build the description
of detector geometry by reading primary numbers from a
single database. In case the relational database schema
allows versioning of primary numbers, GeoModel
descriptions can also be versioned. An automatic version
detection system has also been developed.

In ATLAS, visual debugging tools developed with the
use of Open Inventor toolkit complement the GeoModel
toolkit. These debugging tools include an interactive
Geometry Browser that allows various manipulations
with volumes: navigation of volume hierarchy,
iconization, printing of volume characteristics such as
mass, shape dimensions, name and copy number. When
used together with simulated data the Browser can also
visualize tracks and hits on top of raw geometry.

In this paper we describe design principles of the
GeoModel toolkit, memory optimization techniques and
also the mechanism of converting GeoModel description
to GEANT4.

DESIGN PRINCIPLES

Material geometry
Material geometry consists of a set of classes that bears

a large resemblance to the GEANT4 material geometry
classes. These classes, however, are designed to take a
minimal size in memory. This requirement determines
the basic data structure used to hold the data for the
geometry description. That structure is a graph of nodes
consisting of both physical volumes and their properties
(name, identifier, transformation in local coordinate
system). The tree is built directly and accessed in a way
that provides users with access to volumes and,
simultaneously, to the properties accumulated during
graph traversal that apply to the volumes.

Physical volumes are the main building blocks of the
geometry graph. The structure of a physical volume
consists of an associated logical volume (describing just
shape and material) and a set of child physical volumes
and their properties. In GeoModel we distinguish two
types of physical volumes:

• Regular Physical Volumes, designed to be small;
• Full Physical Volumes, designed to hold in cache

complete information about how the volume is
located with respect to the world volume, its
formatted name string and other important
information.

When one adds a transformation in the graph, it
changes the position of the subsequent volume with
respect to the parent. If one adds more than one
transformation to the volume before adding a parent, they
will be multiplied. The last transformation to be added is
applied first to the child. Like physical volumes,
transformations come in two types:

• Regular transformations, designed to be small;
• Alignable transformations, which allow one to add

a misalignment to the system. Misaligning a
transformation changes the position of all volumes
“under” the transformation and clears the absolute
location caches of all full physical volumes.

GeoModel includes also three mechanisms for giving
names to physical volumes:

1. Do nothing, the volume will be called “ANON”;
2. Add a Name Tag object to the graph before adding

a volume, the next volume to be added will be
given the Tag’s name;

3. Add a Serial Denominator object to the graph
before adding more volumes. The volumes will be
named according to the base name of the
Denominator, plus given a serial number 0, 1, 2 …

Readout geometry
The readout geometry layer consists of geometrical

information that is not declared directly to the tracing
engines (GEANT4), for example: projective towers
within a calorimeter, or the boundaries of ion implant
layers in silicon detectors. Information such as the
position of the boundaries of these regions is not required
in the simulation of basic physics processes, though it
certainly is required in the digitization, and possibly hit-
making phase of simulation (Sensitive Detectors).

Detector-specific geometrical services can and should
include services that derive from the basic raw and
readout geometry of the detector. Such services could
include point-of-closest-approach calculations, global-to-
local coordinate transformations, calculations that
compute the total number of radiation lengths within a
cell etc.

The description of detector readout system can be
realized with the use of Detector Elements. The detector
element has a required association with a piece of
material geometry (full physical volume), and has access
to that piece. The rest of the interface – all of the
geometrical services discussed above, such as the

boundaries of implant layers, strip pitches, or whatever,
can be placed in the detector element.

Interface to Detector Description clients
In GeoModel applications the Detector Manager

objects play a central role in providing an interface to
Detector Description clients. Detector Managers manage
all raw and readout geometry and should provide a fast
mechanism for accessing the detector elements in a
detector-specific way.

So in general the subsystems developers have a lot of
flexibility, but need to devise an interface to both the
detector manager and the detector element that satisfies
their needs. The basic framework requires only that

1. Special Detector Factory objects create a physical
volume tree;

2. They associate readout elements to certain
physical volumes;

3. Additional readout information appear in the
interface to the detector manager and the detector
element.

MEMORY OPTIMIZATION
TECHNIQUES

The requirement of minimizing the memory
consumption has led us to foresee a system in which
objects in the detector description can be re-used. This is
called shared instancing. It essentially means that an
element, compound, volume, or entire tree of volumes
may be referenced by more than one object in the detector
description. We can list following use cases for shared
instancing: few physical volumes can share the same
logical volume, the same name tags and identifier tags
can label different volumes, and the transformations can
be used more than once in the geometry graph.

GeoModel includes few other memory optimization
techniques: Serial Denominators can generate name
strings for physical volumes so that the memory does not
fill up with nearly identifical ASCII name tags;
tiny” transforms (where the footprint for a simple
translation along z, for example, is the size of one floating

point number) reduce the size requirement for most
transformations; finally, volumes can be parameterized
(this mechanism is discussed in next section).

Parameterizations
Parameterizations are mathematical recipes for creating

volumes. There are three main ingredients to these
recipes:

• GENFUNCTIONS, which are mathematical
function-objects; they allow one to perform
function arithmetic in the same way that one
performs floating point arithmetic.

• TRANSFUNCTIONS, which, together with
GENFUNCTIONS and HepTransform3D, allow
one to expand and parameterize elements of the
Euclidean group (i.e., rigid body transformations).

• Serial Transformers, a kind of GeoModel graph
nodes, which allow a particular physical volume to

Figure 1: Example of the usage of parameterized volumes in GeoModel application

be placed according to a TRANSFUNCTION
expansion of a rigid body transformation

The example presented on Figure 1 demonstrates the
usage of parameterizations in GeoModel applications.

The first step is to define a GENFUNCTION. Then a
TRANSFUNCTION is constructed, which parameterizes
the rigid body transformation. The expansion of the
TRANSFUNCTION is as follows. Let Xi (i = 1, 2 … N)
represent any transformation. Furthermore, let us denote
by fi(x) a function of a single variable. Then, the
expansion of an arbitrary function is:

T(x) = X1

f1(x) * X2
f2(x) * X3

f3(x)….. Xn
fn(x)

In this expression, T(x) is the resulting transformation,
which is now a function of the single input parameter, x.
The expansion is both simple, and completely general. A
single term in this expansion (for example X2

f2(x)), will be
referred to as an exponentiated transformation.
Exponentiated transformations are simple
TRANSFUNCTIONs, and can be composed to make
other TRANSFUNCTIONS. The TRANSFUNCTION
interface also allows one to compose fixed
transformations with exponentiated transformations.

Once one has a TRANSFUNCTION in hand, it can be
used together with a Serial Transformer object to
repeatedly place a physical volume. The Serial
Transformer can then be added to the geometry graph.
During any subsequent volume traversal, the geometry
graph will appear to contain multiple physical volumes at
different locations. However, only the memory of a single
physical volume and a TRANSFUNCTION is actually
allocated.

INTERFACE TO GEANT4,
GEO2G4 TRANSLATOR

To run GEANT4 simulation of a detector described in
GeoModel it is necessary to build a GEANT4 specific
raw geometry based on a GeoModel description. In
ATLAS collaboration for this purpose we have developed
a tool called Geo2G4, which automatically translates the
GeoModel description to GEANT4 by navigating the
GeoModel raw geometry graph. To make the resulting
geometry memory-efficient we have implemented a set of
memory optimization techniques, which are applied
during the translation:

1. If some logical volume is shared by leaf physical

volumes in GeoModel tree, the corresponding
GEANT4 logical volume will also be shared.

2. If some physical volume is shared by several
parents in GeoModel tree the corresponding
branch in GEANT4 tree should also be shared.

3. There is a possibility to translate GeoModel serial
transformers into GEANT4 parameterizations.
This feature can be switched on/off. For this
purpose we have developed a class
G4STParameterisation, which can also be used in
GEANT4 applications directly, for the purpose of
creating G4 parameterizations without subclassing.

G4STParameterisation objects perform volume
parameterizations as in GeoModel, in particular with the
use of TRANSFUNCTIONS. The code example
presented on Figure 2 demonstrates a mechanism
implemented by G4STParameterisation class. We believe
that this mechanism could be of major benefit to G4 users
whether or not they also use GeoModel.

The Geo2G4 converter is simple and reliable tool,
which has been used in ATLAS experiment to translate
GeoModel descriptions of all subsystems to GEANT4
simulation.

Figure 2: Implementation of GEANT4 parameterisations with G4STParameterisation class

USAGE OF GEOMODEL TOOLKIT IN
ATLAS SOFTWARE

The ATLAS GeoModel project started nearly two years
ago. Since that the geometries of all ATLAS detector
subsystems have been described using GeoModel
mechanisms. Reference[1] describes the way in which all
of ATLAS is described in terms of GeoModel. The
GeoModel descriptions of tracking detectors are presently
used for simulation part of ATLAS Data Challenge 2.
Reference [2] describes the simulation of ATLAS and the

operational experience in DC2. It is also planned to
develop all subsequent versions of ATLAS detector
(Initial Layout, Realistic Geometry etc.) with the use of
GeoModel and recently developed Geometry Versioning
System.

REFERENCES

1. Adele Rimoldi et. al, these proceedings.
2. S. Spagnolo et. al, these proceedings.

