

IBM TotalStorage

Storage Futures and Research

Jai Menon IBM Fellow

September 2004

© 2004 IBM Corporation

Disk Drive Technology Trends

- Recent past ~100% CAGR
- Industry view of future mixed
- Forecasts are now 40% CAGR

- Most vendors moving to 65mm diameter drives
- Drive FF likely to also be reduced to 2 ¹/₂"

© 2004 IBM Corporation

ON DEMAND BUSINESS

• 3 ¹/₂" FF drives may be gone by 2010

Disk Drive Cost and Capacity Trends

- Technology has been outpacing needs
- Single platter drive most likely
- 2010 sweet spot: ~1TB 2 ½" disk

- 2010 2.5" desktop disk will likely cost ~ \$100
- Enterprise ~3X Desktop drives in \$/GB

Disk Drive Performance Trends

- Historical trend: ~8% /yr, will continue
- Command queuing can help significantly
- Historical trend: ~40%/yr
- Will track linear density
- Assume channels can keep up

Disk Drive Reliability Trends

- Actual information from field not as good as vendor specs
- Drive hard error rate 1 in 10¹⁶ for enterprise
- Issue as drive capacity increases
- .8% probability of hard error (HE) reading 1 TB

Large customers will need more than R-5/Mirroring

Failure rates in a system with 1 PB

	RAID5	Mirror	RAID-6	New
Drive Loss/Y	46	80	46	80
Strip Loss/Y	6	2	2e-3	2e-9
Array Loss/Y	2 e -3	3 e -4	1 e- 6	7e-12

When a disk fails, there is a 1% to 8% chance of being unable to read all sectors from other disks in the array -- this causes a strip loss

	# of errors	los/write	Eff. (16)
RAID5	1	4	94%
Mirror	1	2	50%
RAID6	2	6	88%
New	2	4	50%
New	2	5	82%
3xMirror	2	3	33%
RAID51	3	6	44%
NewRAID	3	6	50%

ON DEMAND BUSINESS

Disks in 2010

Drive Characteristics

- 1-10TB capacity
- 3 ms Access
- 700MB/s streaming data rate
- 70MB/s random data rate for 256 KB records
- Random I/O rate 500 IOs/sec (with queueing)
- MTBF 1,200,000 hours

System Consequences

Number of disks	10,000		35,000	
Raw Capacity Cabinets (2 ¹ / ₂ ")	10PB	10	35PB	35
Streaming Bandwidth	7 TB/s		24 TB/s	
Random Bandwidth	.7 TB/s		2.4TB/s	
Failures	~1.5 /wk		~5/wk	

SCM – Storage Class Memory

•Eventual replacement for Enterprise DASD?

Amount of Stored Data

TRM

SCM = 1/10 of DRAM in 2010

Tape Roadmap

ON DEMAND BUSINESS[™]

Storage Management is a big challenge

Storage cost increasing as fraction of total server HW (>50%)

Storage management is a major concern of customers

- Management personnel cost conservatively 2-3x purchase
- Not getting simpler: More entities, more options, more tools, more acronyms
 - configuring, identifying failed components, understanding scope of impact
- Requirements are increasing (e.g., 24x7 operation)

Today – diversity of storage infrastructures and management

ON DEMAND BUSINESS[®]

Approach to deal with storage management

- Single storage infrastructure and common management for the enterprise
- Minimize complexity of storage hardware
 - minimize number of components
 - eliminate cables
 - reduce environmentals
 - fail-in-place
- Move from 1 TB/storage admin to 1 PB/storage admin

Common File Systems and Management

ON DEMAND BUSINESS

Integrated Life Cycle management of Data

Unified File Federation Architecture (UFFA)

- Geographically distributed server clusters forming single namespace
 - Replication of files/containers for good local performance
 - Extended protocols for consistency across replicas
 - Migration of primary copy of data to point of use

Meta-data server cluster

Google for the Enterprise

- File system directory structure based upon file cabinet metaphor
 - Each file exists in one place in a fixed hierarchy
 - To find a file must remember where it was placed
- Metaphor has not scaled with growth in number of files
 - Modern scalable file systems aim for storing a billion files
 - Need paradigm shift to a more flexible mechanism

Collective Intelligent Bricks

Key Ideas for low maintenance

- One basic building block
- Deferred maintenance
- Eliminate high maintenance parts like cables, fans
- Continuous, autonomic data migration, cache mgmt, throttling

Key Ideas for low cost

- ATA drives
- low-cost distributed switching
- cheap, low-power processors

© 2004 IBM Corporation

ON DEMAND BUSINESS

dense packaging

Collective Intelligent Bricks (CIB)

Bricks are stacked on vertical columns (not shown) for power insertion and heat removal
Bricks communicate with neighbors in a 3D mesh

Logic View = 3D Mesh

Cube

Almaden prototype - 3x3x3 bricks, 324 disks, 32 TB, 2 ft on a side => could store all the books of the library of congress, June 2004

ON DEMAND BUSINESS

CIB Prototype

ON DEMAND BUSINESS^{**}

© 2004 IBM Corporation

CIB Family

© 2004 IBM Corporation **ON DEMAND BUSINESS**

22

IceCube: Storage and/or Compute Server

Color code: Blue=Storage Bricks Yellow=Compute Bricks Green=Mixed Bricks

© 2004 IBM Corporation

ON DEMAND BUSINESS

Storage Futures and Research |