
DZERO DATA AQUISTIION MONITORING AND HISTORY GATHERING

G. Watts, University of Washington, Box 351560, Seattle, WA, 98195

Abstract

The DZERO Collider Experiment logs much of its Data
Acquisition Monitoring Information in long term storage.
This information is most frequently used to understand
shift history and efficiency. Approximately 16 kilobytes
of information is stored every 15 seconds. We describe
this system and the web interface provided. The current
system is distributed, running on Linux for the back end
and Windows for the web interface front end and data
logging. We also discuss the development path we have
taken for the database backend, from use of root, to
Oracle, and back to root, and the reasons for the change in
design.

INTRODUCTION
The DØ Detector, located at the Tevatron, underwent a

major upgrade before the start of Run 2, which
commenced in March 2001. One component of this
upgrade is the Level 3 Trigger/DAQ system, whose
capacity was increased to handle higher data rates and
larger event sizes. The software DAQ Monitor system
received a complete rewrite for this upgrade. The new
system is distributed, makes heavy use of XML for
communication, is extensible, and supports reporting data
at less than one second intervals. This paper describes an
archive application used to log a subset of available
monitor data in perpetuity. The application is called
l3xHistoryViewer.

The l3xHistoryViewer application collects data at 15
second intervals and stores the data. A web interface can
then extract the data and generate arbitrary plots. Since
this project started 2.5 years ago, the data store has been
redesigned twice. Its first incarnation used ROOT as a
backend to store the data, the second Oracle, and the third
ROOT. After describing the system in more detail, this
paper will examine some of the reasons for the changes in
design.

THE LEVEL 3 TRIGGER/DAQ AND
MONTIORING SYSTEM

The Run 2 DØ Trigger system uses a multilayer trigger
system typical of a large collider experiment. Level 1 is a
hardware based, dead timeless trigger capable of making
fairly simple decision. Level 2 is a combination of custom
hardware and Single Board Computers, and finally Level
3 is a farm of general purpose, commodity, PCs running
trigger software written by physicists, in C++.

Level 3 Trigger/DAQ is based around commodity
network components and PC’s. Single Board Computers
(SBCs) read data from VME based Read Out Crates
(ROCs). The SBC’s send the data cross the network, via a

large Cisko network switch, to a PC for event building
and filtering. A Routing Master (RM), connected directly
to the Level 1/Level 2 trigger framework hardware steers
each event to a free, properly configured, farm PC. A
Supervisor interacts with the DØ online run control
(COOR) and configures the components of the trigger and
DAQ system as requested [1].

The system contains a large number of components that
must be monitored to assure smooth running. There are 63
ROCs and their SBCs and 114 Level 3 Trigger Farm PCs,
a RM, and a Supervisor. These are called clients in the
monitoring system. Many of these have more than a
single program that produces monitor information, and
there are a number of other sources of monitor
information throughout the online system.

The monitor system design is based around a central
monitor server, as shown in Figure 1 [2]. Clients, sources
of data, and displays, which request data, connect to the
monitor server. The displays request data from the server,
and the server queries the clients and returns the
information. The display’s request can be for data from
many different machines, and the monitor server will
collate the data from all the clients into a single reply. The
client is never queried for information unless a display
requests that information. This is designed to minimize
the load on the DAQ components and also provide for the
possibility of complex, expensive monitor information for
debugging; it is only generated when requested.

Figure 1: Block diagram of the DØ DAQ Monitor
System. Clients connect to the Client Handler, and
displays to the Display handler. The Reply Builder uses
the Monitor Data cache to satisfy as many requests as
possible from the displays, and for others uses the Client
Handler to make a further request. The l3mq Web
Application caches complex queries and exposes them as
a simple web query.

The monitor server caches the most recent information
from each client. A display can specify a staleness
parameter. The monitor server will only re-query a client

Monitor Data
Cache

Client
Handler

Display
Handler

Reply
Builder

l3mq Web
Application

The Monitor Server

if the display’s request requires more recent data. Most
displays ask for data one second or less in age. Typically
quite a few of these displays are running and thus the
cache is hit ~40% of the time.

All monitor server communication with both displays
and clients is done over TCP/IP and in XML. We use
Xerces [3] for much of our display side parsing, and
wrote a simple light-weight parser for the monitor server.
We use the standard C++ std::string and
std::ostringstream objects to build replies in the clients.
The std::string requires special care: the result must be
preallocated or a large performance hit is taken
reallocating and copying the string as it grows. Figure 2
shows an example of an XML message reply from the
monitor server to a display.

Figure 2: Sample XML response from the Monitor Server
to a Display. The DAQMON tag is the monitor data type,
d0l3mon2.fnal.gov specifies the machine the monitor
information originates from, and DL_Average_Rate or
geo_sect_31 is the actual monitor item name. The
numbers are the data.

Typical client reply message sizes are of order 10 KB,
and one of our larger displays can receive upwards of 100
KB worth of information. We have observed no
performance issues other than forgetting to pre-allocate
std::string (or not using std::ostringstream) and the
overuse of XML to encode 200 connection states. Both
easily fixed once the problem was identified.

The online system is protected by a firewall. A single
external machine is allowed to access the internal monitor
data. There are two ways for other external machines to
access this data. First, there is a TCP/IP relay. The format
of the incoming external monitor request is identical to
the request normally sent directly to the Monitor Server.
The format is checked carefully before the request
forwarded to the monitor server. The second method is
used by a number of clients, including the
l3xHistoryViewer. A web application caches a particular
monitor request and associates a name with that request
(see Figure 1). A simple URL can be used to then request
the monitor response. The monitor items returned by the
request can be changed by a user using a web interface. In
the case of l3xHistoryViewer this is particularly
convenient as it allows one to alter the items archived

using only the web interface. The web application is
called l3mq (Level 3 Monitor request).

THE L3XHISTORYVIEWER
The logical design of l3xHistoryViewer is shown in

Figure 3. Every 15 seconds l3xHistoryViewer backend
requests a list of monitor values from the l3mq
application. The returned XML is parsed. The data and a
unique name are extracted for each monitor item. These
items are then stored in a data store (ROOT or Oracle). A
web application then reads the data at a users request and
uses ROOT to plot the data and display it on the web.

Figure 3: The logical design of the l3xHistoryViewer
application. The data collector uses the l3mq monitor
query cache to request the monitor data to be archived,
and writes it to the data store. The web front end reads the
data store and generates plots.

The backend, responsible for storing the data, has a
fairly unique set of problems to solve. Most of these are
driven by the fact that the monitor data is not stable over
time. For example one monitor item requested is the event
rate in each Level 3 farm node, which means a monitor
item is sent for each of the 114 farm nodes.
Unfortunately, these nodes are not stable and experience
hardware related failures (one node a week tends to be
offline for more than an hour). Further, a user may change
the requested monitor items at any time using the l3mq
web interface. Finally, the monitor server does not
guarantee a response from every monitor source on every
request. Sometimes a network connection is lost or a
client machine is too busy to respond within the monitor
server’s one second timeout. The backend must also be
able to write the data out to the backend store with low
latency so a user can see up-to-date trends and plots from
the web.

The web front end presents the user with a simple
interface and caches common plot requests so they may
be requested quickly using a single URL. The ROOT
code that generates the plots can be altered by a user after
appropriate authorization. The front end is also capable of
calculating aggregate quantities – the average number of
events processed by each active farm node, for example.

Monitor data is collected once very 15 seconds. The
average number of monitor items is currently about 4000.
If each item uses 4 bytes, then each hour this is 3.7 MB
and about 31 Gigabytes per year.

Data Store

Web Pages
(Plots)

Data Collector

Monitor Server

l3mq Cached
Monitor
Request

l3xHistoryViewer

THE THREE VERSIONS OF
L3XHISTORYVIEWER

The design of the l3xHistoryViewer went through three
iterations. The first was based on a ROOT data store, the
second was Oracle based, and the third returned to a
ROOT based data store.

All three versions of l3xHistoryViewer were written on
Windows. The first version was written in C++, and the
second in C#, and the third in a combination of C# and
C++. All used ASP.NET to implement the web
application and the web service for the front end. Most of
the design of l3xHistoryViewer is driven by the backend
data store. The application code could easily be ported to
Linux using C++, Java, or, perhaps, Mono, and PHP or
J2EE for the web front-ends.

ROOT I
This version of l3xHistoryViewer was a prototype to

investigate the expected and discover the unexpected
problems. Its design will only briefly discussed. The
initial design was based on a previously existing program
that dumped arbitrary monitor data to the screen for
debugging. The XML parsing, hand coded, was not
robust. The scheme to generate a unique name for each
monitor item was not robust. The data was stored in a
large root TTree; a single leaf was used for each variable,
so the tree had as many leaves as there were monitor
items (in excess of 4000). It is not possible to add a new
leaf to a TTree once any data has been saved to the TTree,
nor was it possible to mark a particular monitor item as
missing if it temporarily dropped out. The result was that
each time the list of monitor items changed the old TTree
was closed and a new one created (one tree was stored per
file). The large number of files and leaves proved to be a
performance issue in version 3 of ROOT. The CPU time
required to load a TTree with a large number of leaves is
large; a single request for a plot often required 20 or 30
files and took more than 30 seconds. This issue has been
substantially mitigated in version 4 of ROOT. Finally, the
plotting code was tightly tied to ROOT, physically
passing the TTree object around.

Oracle
Several lessons were taken from the first version of

l3xHistoryViewer for this version: make the data format
more robust against changing monitor items; remove the
linkage between data store storage format and the plotting
code; and add flexibility to the access of the data: plots by
Tevatron Store Number, Run Number, Date, and other
unforeseen things.

About the same time we were considering this redesign
the DØ online system installed a beta-version of Oracle
8.1.7 on Linux and offered to host the l3xHistoryViewer
data store as an Oracle database. This was attractive as
management functions, like backup, would be taken care
of by online system management personnel. This was
even more attractive as we’d just lost several months of
data due to a disk crash. The services of a Database

Expert were also offered as most of us were fairly
inexperienced in database development. Oracle ran on a
dual 2.4 GHz P4 Xeon with about 100 GB of disk space,
which wasn’t configured as a RAID array.

The design follows Figure 3. After several iterations of
database design we settled on the tables and relations
shown in Figure 4. The layout was a compromise between
speed and space. The main table, EVENT_INDEX,
contains a single entry for each time slice (every 15
seconds). It’s linked by its primary ID to all the values for
that time slice in the EVENT_TO_VALUE table.
Because many values read back constant, each possible
value is stored once in the ITEM_VALUE table (for
example, event rate will be zero for long periods of time
between Tevatron stores). This compresses the amount of
data stored. For further space savings, the ITEM_VALUE
data are rounded to the .1% level. Finally, there is a link
from each value to the name of the monitor item.

Figure 4: The layout of the Oracle Database for storing
monitor data. The primary table, EVENT_INDEX,
contains one entry for each time slice (4 per minute). The
EVENT_TO_VALUE table contains one entry for each
monitor item for each time slice. The ITEM_VALUE
table contains all values of each monitor item, and is
linked to the ITEM_NAME for the full ASCII item name.

In order to keep insertion time below ten seconds, all
updates were done using the Oracle batch feature and
using a stored procedure to maintain database
consistency. Without these optimizations insertion was
over 25 seconds.

Performance issues related to the extraction of the data
were never fully resolved. The tests were performed after
the data collection had run for 3 weeks. The query was
keyed by a single run and monitor item request which
should return 147 item entries. A straight forward,
monolithic SQL statement with no database optimization
took 247 seconds. A non-existent run took over 30
seconds to return a null result. The freeware tool Toad
was used to examine Oracle’s SQL plan and optimize the
database [4]. The null result was returned in 0.3 seconds,
and the 147 item request in 135 seconds. By extracting
the ITEM_VALUE and ITEM_NAME and
EVENT_INDEX locally to the front end web application,
and doing the database JOIN there, speed was further

improved to about 30 seconds. Further progress was
blocked due to a month of downtime and Oracle database
corruption that was eventually traced to a bad disk.

Space was also an issue. After three months of data
collection the database was projected to grow to over 100
GB for a full year’s data collection. This was due to a
combination of rollback logs, redo logs, and internal
backups in the Oracle database. Some tuning was done to
decrease this, but the effect was minimal.

ROOT II
In light of the Oracle problems we decided to re-write

the data access layer in a third version. The data store
would be again ROOT based, but in order to keep the
flexibility a database would be used to store index data.

The database, currently hosted in Access, contains a
table that associates runs and stores with dates. The root
files are then archived in the file system, with directories
named by date.

Figure 5 shows the layout of the two TTree’s present in
each root file. This is a compromise between the root file
design of the first ROOT implementation and the
complete flexibility of the Oracle database. The two trees
are designed to prevent the addition of a new item causing
the file to open and close and also minimize the number
of branches in the TTree.

Figure 5: Contents of the two TTree's in each root file.
The first tree, History Names, acts as an index into the
second. The second stores only the monitor item data, in
an array. Each branch of the second tree represents data
from a single monitor data source.

The first tree, the HistoryNames tree, is an index. It
contains an entry for each monitor item stored in the
second tree, the HistoryData tree. The second tree stores
the monitor data as a set of arrays. Each branch in the tree
contains one floating point array. Each branch is named
for the source of the data (for example, DAQMON). The
index into the array for a particular monitor item is stored
in the HistoryNames array. There is also a bool value
stored in the HistoryData arrays to indicate the data is
valid, allowing for the temporary disappearance of
monitor items.

A new file must be written each time a new monitor
type appears in the monitor stream: it isn’t possible to
easily add a branch to an already written tree. The system
is designed to not forget monitor types that have
disappeared, so if they return they will not trigger a new
file. Because the values for those monitor items are zero
ROOT should compress them away to almost nothing.

Despite the layout working against ROOT’s
compression software, two months of data indicates

accumulating about 15.5 GB per year, which is easily
manageable.

Extracting the data requires looping over each file that
contains the required data. For each file, the
HistoryNames tree is used to find the index into the
HistoryData tree, and the data is then extracted and
plotted. The plotter application can read the TTree as they
are being written by the backend. The backend is tuned to
update the ROOT file every several minutes so the plotter
can extract the most recent information. Significant
tuning of ROOT buffer sizes was required to assure that
the in-memory foot print of the backend remained
reasonable (currently requires about 40MB, 22MB of
which can be traced to ROOT).

Performance tests were done on a PIII M 1.3 GHz CPU
(a laptop). Extraction of ~900 items from 20 different
files took 5.2 seconds on average. This performance was
achieved only after a memory leak bug in ROOT was
found and fixed. On the production machine, which is
almost a factor of two faster, we expect the speed to
improve further.

The plotting front-end has not yet been fully
redeveloped for this version of ROOT. This will be
completed shortly now that outstanding issues having to
do with ROOT extraction have been addressed.

CONCLUSIONS
This project was initially thought to be a one-off taking

of order 2-3 months to develop and get into production.
Besides minor tuning and improvements, it was thought
that very little day-to-day maintenance would be required.

Even the modest amount of data and the required
flexibility required careful design. The use of the database
was rolled back; in the end only data that is to be indexed
on is stored in the database. The rest is stored external to
the database. This keeps the database small and fast.
Indeed, a low end database like Access has proved to be
more than capable for holding the indices up to now.
There is a further issue concerning development: Oracle
is not a single person database. This makes it difficult to
develop with as frequently database manager personnel
must be accessible to make progress.

Starting with the lessons outlined in this paper it should
be possible to put together a simple system similar to this
fairly quickly. The tuning for speed, disk space, and
memory management isn’t easy, but there does exist a
sweet spot.

REFERENCES
[1] The DZERO Run II Level 3 Trigger and Data

Acquisition System (#477), Presented by D.
Chapin at CHEP’04.

[2] DZERO Online Monitoring and Automatic
Recovery (THGT004), Presented by G. Watts at
CHEP’03. http://arxiv.org/abs/physics/0306195/

[3] The Apache XML Project, http://xml.apache.org/
[4] Toadsoft Home Page: http://www.toadsoft.com/

History Names History Data

Branch: One Per Data Source

Array of Values

Branch

Array of Monitor Item
Names and Index

