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Abstract 

The DZERO Collider Experiment logs much of its Data 
Acquisition Monitoring Information in long term storage. 
This information is most frequently used to understand 
shift history and efficiency. Approximately 16 kilobytes 
of information is stored every 15 seconds. We describe 
this system and the web interface provided. The current 
system is distributed, running on Linux for the back end 
and Windows for the web interface front end and data 
logging. We also discuss the development path we have 
taken for the database backend, from use of root, to 
Oracle, and back to root, and the reasons for the change in 
design. 

INTRODUCTION 
The DØ Detector, located at the Tevatron, underwent a 

major upgrade before the start of Run 2, which 
commenced in March 2001. One component of this 
upgrade is the Level 3 Trigger/DAQ system, whose 
capacity was increased to handle higher data rates and 
larger event sizes. The software DAQ Monitor system 
received a complete rewrite for this upgrade. The new 
system is distributed, makes heavy use of XML for 
communication, is extensible, and supports reporting data 
at less than one second intervals. This paper describes an 
archive application used to log a subset of available 
monitor data in perpetuity. The application is called 
l3xHistoryViewer. 

The l3xHistoryViewer application collects data at 15 
second intervals and stores the data. A web interface can 
then extract the data and generate arbitrary plots. Since 
this project started 2.5 years ago, the data store has been 
redesigned twice. Its first incarnation used ROOT as a 
backend to store the data, the second Oracle, and the third 
ROOT. After describing the system in more detail, this 
paper will examine some of the reasons for the changes in 
design. 

THE LEVEL 3 TRIGGER/DAQ AND 
MONTIORING SYSTEM 

The Run 2 DØ Trigger system uses a multilayer trigger 
system typical of a large collider experiment. Level 1 is a 
hardware based, dead timeless trigger capable of making 
fairly simple decision. Level 2 is a combination of custom 
hardware and Single Board Computers, and finally Level 
3 is a farm of general purpose, commodity, PCs running 
trigger software written by physicists, in C++. 

Level 3 Trigger/DAQ is based around commodity 
network components and PC’s. Single Board Computers 
(SBCs) read data from VME based Read Out Crates 
(ROCs). The SBC’s send the data cross the network, via a 

large Cisko network switch, to a PC for event building 
and filtering. A Routing Master (RM), connected directly 
to the Level 1/Level 2 trigger framework hardware steers 
each event to a free, properly configured, farm PC. A 
Supervisor interacts with the DØ online run control 
(COOR) and configures the components of the trigger and 
DAQ system as requested [1]. 

The system contains a large number of components that 
must be monitored to assure smooth running. There are 63 
ROCs and their SBCs and 114 Level 3 Trigger Farm PCs, 
a RM, and a Supervisor. These are called clients in the 
monitoring system. Many of these have more than a 
single program that produces monitor information, and 
there are a number of other sources of monitor 
information throughout the online system. 

The monitor system design is based around a central 
monitor server, as shown in Figure 1 [2]. Clients, sources 
of data, and displays, which request data, connect to the 
monitor server. The displays request data from the server, 
and the server queries the clients and returns the 
information. The display’s request can be for data from 
many different machines, and the monitor server will 
collate the data from all the clients into a single reply. The 
client is never queried for information unless a display 
requests that information. This is designed to minimize 
the load on the DAQ components and also provide for the 
possibility of complex, expensive monitor information for 
debugging; it is only generated when requested. 

 
Figure 1: Block diagram of the DØ DAQ Monitor 
System. Clients connect to the Client Handler, and 
displays to the Display handler. The Reply Builder uses 
the Monitor Data cache to satisfy as many requests as 
possible from the displays, and for others uses the Client 
Handler to make a further request. The l3mq Web 
Application caches complex queries and exposes them as 
a simple web query. 

The monitor server caches the most recent information 
from each client. A display can specify a staleness 
parameter. The monitor server will only re-query a client 

Monitor Data 
Cache 

Client 
Handler 

Display 
Handler 

Reply 
Builder 

l3mq Web 
Application 

The Monitor Server 



if the display’s request requires more recent data. Most 
displays ask for data one second or less in age. Typically 
quite a few of these displays are running and thus the 
cache is hit ~40% of the time. 

All monitor server communication with both displays 
and clients is done over TCP/IP and in XML. We use 
Xerces [3] for much of our display side parsing, and 
wrote a simple light-weight parser for the monitor server. 
We use the standard C++ std::string and 
std::ostringstream objects to build replies in the clients. 
The std::string requires special care: the result must be 
preallocated or a large performance hit is taken 
reallocating and copying the string as it grows. Figure 2 
shows an example of an XML message reply from the 
monitor server to a display. 

 
Figure 2: Sample XML response from the Monitor Server 
to a Display. The DAQMON tag is the monitor data type, 
d0l3mon2.fnal.gov specifies the machine the monitor 
information originates from, and DL_Average_Rate or 
geo_sect_31 is the actual monitor item name. The 
numbers are the data. 

Typical client reply message sizes are of order 10 KB, 
and one of our larger displays can receive upwards of 100 
KB worth of information. We have observed no 
performance issues other than forgetting to pre-allocate 
std::string (or not using std::ostringstream) and the 
overuse of XML to encode 200 connection states. Both 
easily fixed once the problem was identified. 

The online system is protected by a firewall. A single 
external machine is allowed to access the internal monitor 
data. There are two ways for other external machines to 
access this data. First, there is a TCP/IP relay. The format 
of the incoming external monitor request is identical to 
the request normally sent directly to the Monitor Server. 
The format is checked carefully before the request 
forwarded to the monitor server. The second method is 
used by a number of clients, including the 
l3xHistoryViewer. A web application caches a particular 
monitor request and associates a name with that request 
(see Figure 1). A simple URL can be used to then request 
the monitor response. The monitor items returned by the 
request can be changed by a user using a web interface. In 
the case of l3xHistoryViewer this is particularly 
convenient as it allows one to alter the items archived 

using only the web interface. The web application is 
called l3mq (Level 3 Monitor request). 

THE L3XHISTORYVIEWER 
The logical design of l3xHistoryViewer is shown in 

Figure 3. Every 15 seconds l3xHistoryViewer backend 
requests a list of monitor values from the l3mq 
application. The returned XML is parsed. The data and a 
unique name are extracted for each monitor item. These 
items are then stored in a data store (ROOT or Oracle). A 
web application then reads the data at a users request and 
uses ROOT to plot the data and display it on the web. 

 
Figure 3: The logical design of the l3xHistoryViewer 
application. The data collector uses the l3mq monitor 
query cache to request the monitor data to be archived, 
and writes it to the data store. The web front end reads the 
data store and generates plots. 

The backend, responsible for storing the data, has a 
fairly unique set of problems to solve. Most of these are 
driven by the fact that the monitor data is not stable over 
time. For example one monitor item requested is the event 
rate in each Level 3 farm node, which means a monitor 
item is sent for each of the 114 farm nodes. 
Unfortunately, these nodes are not stable and experience 
hardware related failures (one node a week tends to be 
offline for more than an hour). Further, a user may change 
the requested monitor items at any time using the l3mq 
web interface. Finally, the monitor server does not 
guarantee a response from every monitor source on every 
request. Sometimes a network connection is lost or a 
client machine is too busy to respond within the monitor 
server’s one second timeout. The backend must also be 
able to write the data out to the backend store with low 
latency so a user can see up-to-date trends and plots from 
the web. 

The web front end presents the user with a simple 
interface and caches common plot requests so they may 
be requested quickly using a single URL. The ROOT 
code that generates the plots can be altered by a user after 
appropriate authorization. The front end is also capable of 
calculating aggregate quantities – the average number of 
events processed by each active farm node, for example. 

Monitor data is collected once very 15 seconds. The 
average number of monitor items is currently about 4000. 
If each item uses 4 bytes, then each hour this is 3.7 MB 
and about 31 Gigabytes per year. 
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THE THREE VERSIONS OF 
L3XHISTORYVIEWER 

The design of the l3xHistoryViewer went through three 
iterations. The first was based on a ROOT data store, the 
second was Oracle based, and the third returned to a 
ROOT based data store. 

All three versions of l3xHistoryViewer were written on 
Windows. The first version was written in C++, and the 
second in C#, and the third in a combination of C# and 
C++. All used ASP.NET to implement the web 
application and the web service for the front end. Most of 
the design of l3xHistoryViewer is driven by the backend 
data store. The application code could easily be ported to 
Linux using C++, Java, or, perhaps, Mono, and PHP or 
J2EE for the web front-ends. 

ROOT I 
This version of l3xHistoryViewer was a prototype to 

investigate the expected and discover the unexpected 
problems. Its design will only briefly discussed. The 
initial design was based on a previously existing program 
that dumped arbitrary monitor data to the screen for 
debugging. The XML parsing, hand coded, was not 
robust. The scheme to generate a unique name for each 
monitor item was not robust. The data was stored in a 
large root TTree; a single leaf was used for each variable, 
so the tree had as many leaves as there were monitor 
items (in excess of 4000). It is not possible to add a new 
leaf to a TTree once any data has been saved to the TTree, 
nor was it possible to mark a particular monitor item as 
missing if it temporarily dropped out. The result was that 
each time the list of monitor items changed the old TTree 
was closed and a new one created (one tree was stored per 
file). The large number of files and leaves proved to be a 
performance issue in version 3 of ROOT. The CPU time 
required to load a TTree with a large number of leaves is 
large; a single request for a plot often required 20 or 30 
files and took more than 30 seconds. This issue has been 
substantially mitigated in version 4 of ROOT. Finally, the 
plotting code was tightly tied to ROOT, physically 
passing the TTree object around. 

Oracle 
Several lessons were taken from the first version of 

l3xHistoryViewer for this version: make the data format 
more robust against changing monitor items; remove the 
linkage between data store storage format and the plotting 
code; and add flexibility to the access of the data: plots by 
Tevatron Store Number, Run Number, Date, and other 
unforeseen things. 

About the same time we were considering this redesign 
the DØ online system installed a beta-version of Oracle 
8.1.7 on Linux and offered to host the l3xHistoryViewer 
data store as an Oracle database. This was attractive as 
management functions, like backup, would be taken care 
of by online system management personnel. This was 
even more attractive as we’d just lost several months of 
data due to a disk crash. The services of a Database 

Expert were also offered as most of us were fairly 
inexperienced in database development. Oracle ran on a 
dual 2.4 GHz P4 Xeon with about 100 GB of disk space, 
which wasn’t configured as a RAID array. 

The design follows Figure 3. After several iterations of 
database design we settled on the tables and relations 
shown in Figure 4. The layout was a compromise between 
speed and space. The main table, EVENT_INDEX, 
contains a single entry for each time slice (every 15 
seconds). It’s linked by its primary ID to all the values for 
that time slice in the EVENT_TO_VALUE table. 
Because many values read back constant, each possible 
value is stored once in the ITEM_VALUE table (for 
example, event rate will be zero for long periods of time 
between Tevatron stores). This compresses the amount of 
data stored. For further space savings, the ITEM_VALUE 
data are rounded to the .1% level. Finally, there is a link 
from each value to the name of the monitor item. 

 
Figure 4: The layout of the Oracle Database for storing 
monitor data. The primary table, EVENT_INDEX, 
contains one entry for each time slice (4 per minute). The 
EVENT_TO_VALUE table contains one entry for each 
monitor item for each time slice. The ITEM_VALUE 
table contains all values of each monitor item, and is 
linked to the ITEM_NAME for the full ASCII item name. 

In order to keep insertion time below ten seconds, all 
updates were done using the Oracle batch feature and 
using a stored procedure to maintain database 
consistency. Without these optimizations insertion was 
over 25 seconds. 

Performance issues related to the extraction of the data 
were never fully resolved. The tests were performed after 
the data collection had run for 3 weeks. The query was 
keyed by a single run and monitor item request which 
should return 147 item entries. A straight forward, 
monolithic SQL statement with no database optimization 
took 247 seconds. A non-existent run took over 30 
seconds to return a null result. The freeware tool Toad 
was used to examine Oracle’s SQL plan and optimize the 
database [4]. The null result was returned in 0.3 seconds, 
and the 147 item request in 135 seconds. By extracting 
the ITEM_VALUE and ITEM_NAME and 
EVENT_INDEX locally to the front end web application, 
and doing the database JOIN there, speed was further 



improved to about 30 seconds. Further progress was 
blocked due to a month of downtime and Oracle database 
corruption that was eventually traced to a bad disk. 

Space was also an issue. After three months of data 
collection the database was projected to grow to over 100 
GB for a full year’s data collection. This was due to a 
combination of rollback logs, redo logs, and internal 
backups in the Oracle database. Some tuning was done to 
decrease this, but the effect was minimal. 

ROOT II 
In light of the Oracle problems we decided to re-write 

the data access layer in a third version. The data store 
would be again ROOT based, but in order to keep the 
flexibility a database would be used to store index data. 

The database, currently hosted in Access, contains a 
table that associates runs and stores with dates. The root 
files are then archived in the file system, with directories 
named by date. 

Figure 5 shows the layout of the two TTree’s present in 
each root file. This is a compromise between the root file 
design of the first ROOT implementation and the 
complete flexibility of the Oracle database. The two trees 
are designed to prevent the addition of a new item causing 
the file to open and close and also minimize the number 
of branches in the TTree. 

 
Figure 5: Contents of the two TTree's in each root file. 
The first tree, History Names, acts as an index into the 
second. The second stores only the monitor item data, in 
an array. Each branch of the second tree represents data 
from a single monitor data source. 

The first tree, the HistoryNames tree, is an index. It 
contains an entry for each monitor item stored in the 
second tree, the HistoryData tree. The second tree stores 
the monitor data as a set of arrays. Each branch in the tree 
contains one floating point array. Each branch is named 
for the source of the data (for example, DAQMON). The 
index into the array for a particular monitor item is stored 
in the HistoryNames array. There is also a bool value 
stored in the HistoryData arrays to indicate the data is 
valid, allowing for the temporary disappearance of 
monitor items. 

A new file must be written each time a new monitor 
type appears in the monitor stream: it isn’t possible to 
easily add a branch to an already written tree. The system 
is designed to not forget monitor types that have 
disappeared, so if they return they will not trigger a new 
file. Because the values for those monitor items are zero 
ROOT should compress them away to almost nothing. 

Despite the layout working against ROOT’s 
compression software, two months of data indicates 

accumulating about 15.5 GB per year, which is easily 
manageable. 

Extracting the data requires looping over each file that 
contains the required data. For each file, the 
HistoryNames tree is used to find the index into the 
HistoryData tree, and the data is then extracted and 
plotted. The plotter application can read the TTree as they 
are being written by the backend. The backend is tuned to 
update the ROOT file every several minutes so the plotter 
can extract the most recent information. Significant 
tuning of ROOT buffer sizes was required to assure that 
the in-memory foot print of the backend remained 
reasonable (currently requires about 40MB, 22MB of 
which can be traced to ROOT). 

Performance tests were done on a PIII M 1.3 GHz CPU 
(a laptop). Extraction of ~900 items from 20 different 
files took 5.2 seconds on average. This performance was 
achieved only after a memory leak bug in ROOT was 
found and fixed. On the production machine, which is 
almost a factor of two faster, we expect the speed to 
improve further. 

The plotting front-end has not yet been fully 
redeveloped for this version of ROOT. This will be 
completed shortly now that outstanding issues having to 
do with ROOT extraction have been addressed. 

CONCLUSIONS 
This project was initially thought to be a one-off taking 

of order 2-3 months to develop and get into production. 
Besides minor tuning and improvements, it was thought 
that very little day-to-day maintenance would be required. 

Even the modest amount of data and the required 
flexibility required careful design. The use of the database 
was rolled back; in the end only data that is to be indexed 
on is stored in the database. The rest is stored external to 
the database. This keeps the database small and fast. 
Indeed, a low end database like Access has proved to be 
more than capable for holding the indices up to now. 
There is a further issue concerning development: Oracle 
is not a single person database. This makes it difficult to 
develop with as frequently database manager personnel 
must be accessible to make progress. 

Starting with the lessons outlined in this paper it should 
be possible to put together a simple system similar to this 
fairly quickly. The tuning for speed, disk space, and 
memory management isn’t easy, but there does exist a 
sweet spot.  
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