
High Level Trigger of CMS

•HLT requirements
•General Architecture
•Evaluation sequence
•HLT timing
•Configuration of HLT
•Building the HLT Tree
•Existing implementations
•Conclusion

Olivier van der Aa, Co Author: C. Delaere.
Intitut de Physique Nucléaire

Université Catholique de Louvain

HLT data reduction requirements

HLT principles

• HLT trigger table is
equivalent to a logical
equation involving tests on
reconstructed quantities
(particle Pt, angle between
particles etc…)
• The logical equation can be
represented as a tree
where each Element is a
either a logical operator or an
operand.

• Generally, the selection of one particle involves several steps
called Levels.
⇒ Example: Level-2 electron find a calorimetric cluster above
threshold. Level-2.5 verifies that there is a corresponding hit in the
pixel detector. Level-3 check that the track passes an H/E threshold
to reject pions.

Element

HLT output and building blocks

2. HLT steering building blocks.

•Bool: specify the node outcome
•Bit_vector: detail the selection state.
•vector of TriggerCandidates: list of particles
that passes the selection.

1. Each Tree Element has three output

HLT evaluation sequence

•Trigger response
request is propagated
from the roots to the
leaves.

•The response is
computed going from
top to bottom and
cached at each
Element.

•Each Element
produces a list of
candidates
that have passed the
selection criteria.

CARF
User analysis

code

Optimisation of the evaluation sequence

•The evaluation sequence can be ordered to minimise
the computation time.

In the case of a OR,
first evaluate 1 or 2 ?

• Depends on the trigger probabilities p,
the mean time to accept (ta)
and to reject (tr) an event.
• Find the ordering that minimise the
mean time to accept an event

Ta12 = p1ta1 + (1− p1)p2 (tr1 + ta2)

Ta21 = p2ta2 + (1− p2)p1(tr2 + ta1)

In the case of a AND,
first evaluate 1 or 2 ?

•Find the ordering that minimise the
mean time to reject an event

Tr12 = (1− p1)tr1 + p1(1− p2)(ta1 + tr2)

Tr21 = (1− p2)tr2 + p2 (1− p1)(ta2 + tr1)

Optimisation of the evaluation sequence

• The complete trigger is a OR of several sub-triggers.
• How to order the sub-triggers to minimise the mean time
to accept an event ?

• Reject time is fixed since all
sub-triggers have to be
evaluated to state on the
rejection of an event
• One can order the sub-
triggers
to optimise the mean accept
time <Ta>

Ta k1kn{ } = pk1tak1 + pki (1− pkj)

j=1

i−1

∏⎡

⎣
⎢

⎤

⎦
⎥

i=2

n

∑ taki + trkl
l=1

i−1

∑⎡
⎣⎢

⎤
⎦⎥
,

Find an order {k1…kn} of the sub trigger for which,

Is minimal

Optimisation of the evaluation sequence

•Evaluation of all possible combination grows as n!
•Define an order between two sub trigger as:

•Sort the sequence {k1…kn} according to the defined order.

kl < lk ≡ paktk + (1− pak)pal (trk + tal) < paltl + (1− pal)pak (trl + tak)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(1
34
2)

(1
42
3)

(1
32
4)

(1
24
3)

(4
13
2)

(4
12
3)

(3
42
1)

(4
21
3)

(3
21
4)

(2
14
3)

(3
24
1)

(2
34
1)

permutations

ti
m

e
 i

n
cr

e
a
se

40900.64
10200.13
50600.32
12600.51

trtapibit

•Best combination is (1342).
Other combination result in a
time increase of 50% for the maximum

<T>=68.4 <T>=100.4

Optimisation of the evaluation sequence

•Optimisation at each Trigger node has been implemented
•A procedure to optimise the multi-or that holds the sub-
triggers can be enabled.

• The mean accept time optimisation can reduce the
computation time for signal events for which pi>>1E-3.
• The mean rejection time dominates the total mean time
to process events since in most of the cases events events
are rejected to reduce the rate by a factor 1000.

T = Ta k1kn{ } + Tr Tr = (1− pi)

i=1

n

∏ tri
i=1

n

∑
Invariant under permutationDominates for

background events

Time optimisation will reduce tails
in the computing time distribution

Time distribution

• DY→l+l- with no Pileup in non optimised mode
• Intel Xeon CPU 2.8GHz, 512kB L2 cache, 2GB RAM
• Mean time per L1 accept

1. For HLT accepted events: 777 ms
2. For HLT rejected events: 500 ms

HLT modes

• HLT has been designed to work in two modes:

1. Veto mode: High Level sub-triggers are computed only
if there is a corresponding L1 accept.

2. Non veto: All HLT algorithms are computed even if
the corresponding Level-1 as not been fired.

• Natural implementation. At the building of the trigger
tree, an additional element is added on top of the tree
leaves.

HLT parameter definition

• At each HLT element, the parameters defining the selection
are configurable. Example: Pt threshold, Isolation cut.
• It uses the mechanism of RecConfig and RecQuery provided
by the CARF framework.

RecConfig: Specify what are the parameters on which the
algorithm depends and their default values.

HLT parameter definition

RecQuery: Used to specify the values of the parameters
needed to obtain the RecObjects produced

 by the corresponding RecAlgorithm

When requesting a collection of object:
•If no RecQuery is given, the default
values are used.
•Otherwise the parameters of the
RecQuery are used to construct the
collection.

Guarantee same result (RecObj) for the same
configuration.

class HighLevelTriggerTest : public HighLevelTrigger
{
 virtual void setup() {

RecQuery leaf1("RCTrigger"); leaf1.setParameter("probability",0.2);
RecQuery leaf2("RandomTrigger"); leaf1.setParameter("probability",0.3);
RecQuery leaf3("RandomTrigger"); leaf3.setParameter(``probability", 0.9);
RecQuery node1("ANDTrigger");

node1.setComponent("mother1",leaf1);
node1.setComponent("mother2",leaf2);

RecQuery racine("ORTrigger");
racine.setComponent("mother1",leaf3);
racine.setComponent("mother2",node1);

addRootTriggerElement(racine);
}

};

Building the HLT Tree

• The HighLevelTrigger derived class need to implement a setup
method in which the construction of a set of RecQuery will
define the HLT tree.

XML specification of the HLT tree

•XML can be used to specify the whole tree with all the
parameters that defines the trigger behaviour.
•No need to recompile to change the trigger configuration.
•HighLevelTriggerXML builds the set of RecQuery out of an XML file
<?xml version="1.0" encoding="Latin-1" standalone="no"?>
<!DOCTYPE GlobalTrigger SYSTEM "./HighLevelTrigger.dtd">
<GlobalTrigger>

<OR_Node vetoBit="-1" >

<L3_electron_trigger name="HLTelectrons">
<L25_electron_trigger>

<L2_electron_trigger vetoBit="2">
<Parameter value="26" name=”EtThr"/>
<Parameter value= "1" name="Isolated"/>

</L2_electron_trigger>
</L25_electron_trigger>

<Parameter value="26" name="EtThr"/>
</L3_electron_trigger>

<L3_single_muon_trigger name="HLTmuons">
<L2_single_muon_trigger vetoBit="0">

<Parameter name="PtThr" value="19"/>
</L2_single_muon_trigger>

<Parameter name="PtThr" value="19"/>
</L3_single_muon_trigger>

</OR_Node>
</GlobalTrigger>

Trigger Elements implementations

Element class Description

HLGL2TauTrigger Level 2 single tau Trigger
HLGL25PixelTauTrigger Level 2.5 tau validation with pixel

HLGL25TrackerTauTrigger Level 2.5 tau validation with tracker
HLGL2EleTrigger Level 2 single electron Trigger

HLGL25EleTrigger Level 2.5 single electron Trigger
HLGL2L25DoubleEleTrigger Level 2 or Level 2.5 double electron Trigger

HLGL2L25PhotonTrigger Level 2 or Level 2.5 single photon Trigger
HLGL2MuTrigger Level 2 single muon Trigger
HLGL3MuTrigger Level 3 single muon Trigger
HLGL2JetTrigger 1234 Jet Trigger (calorimetric)

HLGL2MetTrigger Missing Et Trigger
HLGL3EleTrigger Level 3 single electron Trigger

HLGL3PhotonTrigger Level 3 photon Trigger
HLGL3BJetTrigger Level 3 TrackCounting b tagger
HLGL2JPsiTrigger Specific J/ tagger

ttHJetTagging ttH Trigger
HighLevelTriggerAndCombNode Logical and between 2 Trigger, Candidates can

be requested to be separated.
HighLevelTriggerAndNode Logical and between 2 Trigger

HighLevelTriggerNot Logical not
HighLevelTriggerOrNode Logical or between 2 Trigger

HighLevelTriggerRandomElement random Trigger

17 Trigger Elements
are implemented.

•Selection of:
(e/γ,µτ)

Missing Et,
B Jet,

1,2,3,4 Jets

•Can be combined with
the logical Elements:

AND
OR

CombAnd: ex, find a
pair that has same

vertex.

Conclusion

HLT steering software has been developed,
•It uses reconstruction algorithms that are combined
to form the decision logic.
•The decision logic is implemented in a tree.

The evaluation sequence can be ordered to minimise
the time the evaluate the trigger response.

The decision logic can be specified via a XML file.

All selection parameters are programmable in
a coherent way.

