
The High Level Trigger software for the CMS experiment

O. van der Aa∗, C.Delaere†

Abstract

The observation of new physics will be a challenging
task for the CMS experiment at the LHC, in particular for
its High Level trigger (HLT). A prototype of the High Level
Trigger software to be used in the filter farm of the CMS ex-
periment and for the filtering of Monte Carlo samples will
be presented. The implemented prototype heavily uses re-
cursive processing of a HLT tree and allows dynamic trig-
ger definition. The general architecture and design choices
as well as the timing performance of the system are re-
viewed in the light of the DAQ constrains.

CMS DAQ AND TRIGGER DESIGN

The Compact Muon Solenoid (CMS) [1] is one of the
two multi-purposes experiments at the future Large Hadron
Collider. The CMS data acquisition system (DAQ) [2] is
particular in the sense that it has been designed to mini-
mize the use of custom technologies. The collaboration
therefore benefits from the rapid growth of standard net-
work and computing technologies. This choice implies that
there is no special resources allocated in the design of a so
called Level-2 trigger. The whole event selection is per-
formed in two stages, respectively calledLevel-1andHigh
Level Trigger(HLT). The by-product of this decision is that
the selection strategies will only be defined in the HLT soft-
ware. It will certainly give more flexibility for the evolution
of the selection strategies that physicist will require when
developing new analysis.

Another specificity of the CMS DAQ is it’s modularity.
It is expected that the LHC instantaneous luminosity will
build up with time. Therefore it is not necessary to have the
full bandwidth at the first day of beam crossing. The DAQ
design allows to add bandwidth by chunks of12.5kHz as
needed as the luminosity build up as well as the storage
capacity. This modularity is reflected in the HLT cluster,
build with a large amount of commercial computers.

The High Level Trigger is involved each10 µs, as soon
as a Level-1 trigger accept is issued by the Level-1 Global
Trigger Processor. The task of the HLT is to further re-
duce the data rate by a factor∼ 1000 in or order to fulfill
the requirement of an output rate below∼ 100Hz. This
means that the HLT decision has to be taken within10 ms
while keeping efficiency as high as possible for the known
physics channels. In order to achieve this data reduction, a
massive computing power will be required. If one assumes

∗Universit́e Catholique de Louvain, olivier.van.der.aa@cern.ch
† Universit́e Catholique de Louvain, christophe.delaere@cern.ch

a mean computing time ofO(10−2) s for each Level-1 ac-
ceptm with a data input rate ofO(105) Hz, it means that
the computing cluster that will host the HLT system will be
constituted of about1000 CPUs.

The role of the CMS DAQ is to provide the events to the
computing elements of the HLT system. With an estimated
event size of1MB per event at the Level-1 output rate the
DAQ system will require a total bandwidth of100GB/s.

HLT STEERING SOFTWARE

The HLT steering software [3] has the role of applying
selection criteria on reconstructed quantities. For that pur-
pose, it uses reconstruction software [4] dedicated to each
subdetector and has to bring individual responses together
to build the global accept/reject . It can be seen as a logical
equation involving the evaluation of several quantities that
are reconstructed from the detector response. The equation
can be translated into a tree where each node or element is
either an operand or an logical operator. The tree represen-
tation allows to recursively evaluate the trigger.

HighLevelTriggerElement

RecAlgorithm
<HighLevelTriggerCandidate> LazyObserver<G3EventProxy*>

HighLevelTriggerLevel

p2p1

p1 p2=NULL

vector<Candidates> cand
bool result
bit_vector response

Figure 1: UML diagram of the HLT basic building blocks

The basic building blocks of the HLT are shown in
Fig 1. TheHighLevelTriggerElement represents each el-
ement (node) of the HLT tree. An element of a binary tree
is by definition connected to two other elements that we
will call “daughters”. It outputs three objects

1. bool decision, stating the result of the selection
performed in the element,

2. vector<bool> response, used to give a detailed
view of how the event was selected by the element,

3. vector<Candidate> cand, list of particles (Lorentz
vector, vertex) of the particles that passes the selec-
tion.

The HighLevelTriggerLevel is a specialisation of the
HighLevelTriggerElement having only one daughter. In
general the selection of a particle proceeds in several steps
being implementations of theHighLevelTriggerElement.

The Element observes events as they are dispatched by
the CMS reconstruction framework and reconstruct a list of
trigger candidates.

In general the HLT trigger table consists of several sub-
triggers that are combined with a logical “OR”. The owner
of the root of the HLT is designed to hold several roots.
When the HLT response is requested, the response of each
sub-trigger is queried and proceed recursively up to the tree
leaves. The evaluation of a tree branch stops as soon as an
element fails in the chain avoiding unnecessary computing.

To illustrate the evaluation sequence assume a trigger
tree as shown on Fig. 2, which is equivalent to the logical
equation:

Et(e) > 23 ∨ (Et(e) > 14 ∧ Et(τ) > 48).

The selection of particles proceeds in levels, here for the
sake of the example the selection of electrons and taus pro-
ceed in two steps implemented inHighLevelTriggerLevel
derived classes. The logical operators areHighLevelTrig-
gerElement connected to their two daughters.

HighLevelTrigger

Et(τ)>48
(HLGL2TauTrigger)

0

Find tracks in a cone
(HLGL25PixelTauTrigger)

0

Find a pixel seed
(HLGL25EleTrigger)

1

And
0

Find a pixel seed
(HLGL25EleTrigger)

0

OR
0

Et(e)>23
(HLGL2EleTrigger)

0 1

Et(e)>14
(HLGL2EleTrigger)

1

2

3 6

5

4

7

8

Figure 2: Example of a HLT tree. Names in parenthesis are
class names.

When the HighLevelTrigger is queried for it’s response
the request is recursively propagated through the tree in the
following sequence:

1. The request will go up to the element3 , via the “or”
node and element2.

2. Element3 will be evaluated and return false.

3. Since the element3 is false, the attached element2
(HLGL25EleTrigger) will not be evaluated and will
return false.

4. The request will then go up to element6, via the “or”
node, the “And” element and the element5

5. Element6 It will be evaluated and return false.

6. Element5 (HLGL25PixelTauTrigger) must now be
evaluated, but since the previous level returned false
it will be skipped and return false.

7. The request will then go up to element8, via the “or”
node and the “And” element and the attached element
7.

8. Element8 It will be evaluated and return true as well
as element7.

9. The “And” element will be evaluated and return false.

10. The “or” element (the root node) will be evaluated and
return false.

At the end of the evaluation, each Element response is
concatenated to form a list of bits detailing the HLT deci-
sion.

EVALUATION SEQUENCE
OPTIMIZATION

The evaluation sequence can be optimized in order to
minimize the mean computing time required to select
events online. It is clear that not all Elements have to be
evaluated if one of them gives a positive response.

In the case of a “or” node, if the first daughter gives a
positive response then it is not necessary to evaluate the
second daughter. One has then to find the best order of
the two daughter in order to minimize the mean computing
time to accept an event. In the case of a “or” node, the
mean accept time is given by:

〈Ta12〉 = p1ta1 + (1− p1)p2(tr1 + ta2), (1)

where ta(1,2) is the mean accept time for each element,
tr(1,2) is the mean reject time andp(1,2) is the probability
for each element to be positively evaluated. If one reverse
the order of the two Elements, then indices in Eq. 1 just
have to be permuted. Although the mean accept timeTa12

can be optimized, the reject time is fixed since both ele-
ments have to be evaluated to be sure that the “or” element
gives a negative response. In the case of a “and” Element,
the situation is reversed, one can find an ordering that min-
imize the mean reject time but not the mean accept time.

In the previous section, it has been described that the
HLT can hold several sub-triggers that are specialized for
different type of selection. The HLT has to sequentially
evaluate each sub trigger. Evaluation stops either if a pos-
itive response is computed or if all sub-triggers have given
a negative response, in which case the event is rejected.

The optimization of such a configuration is a generaliza-
tion of the “or” element in which they aren daughter at-
tached to the only High Level Trigger object. The mean
time for such a configuration to be evaluated is〈T 〉 =
〈Ta〉+〈Tr〉, where〈Ta〉 is the mean accept time and〈Tr〉
is the mean reject time. Letk1 · · · kn be the order of the
sub-trigger, withki = {1 · · ·n} andki 6= kj ∀ i 6= j. The
mean time for a reject is given by:

〈Tr〉k1···kn
=

n∏
i=1

(1− pki
)

n∑
i=1

trki
, (2)

which is invariant under any permutation of the elements.
This is simply seen since all sub-trigger have to be evalu-
ated to reject the event. The mean accept time〈Ta〉k1···kn

is given by:

〈Tr〉k1···kn =

pk1tak1 +
n∑

i=2

pki

i−1∏
j=1

(1− pkj
)

[
taki

+
i−1∑
l=1

trkl

]
.

(3)

It is clear that all possible arrangements cannot be eval-
uated since it grows asn! with the trigger size. It can be
shown that the arrangement that minimizes expression of
Eq. 3 is found if the order between two elements is defined
as for the simple “or” case, i.e.:

||kl|| < ||lk|| ≡
paktk + (1− pak)pal(trk + tal) <

paltl + (1− pal)pak(trl + tak). (4)

The gain in ordering sub-triggers in such a sequence
is illustrated in the following, where one assumes to
have four sub-triggers that have high triggering prob-
abilities. Let choose four triggers with(pi, ta, tr) =
{(0.5, 60, 12), (0.3, 60, 50), (0.1, 20, 10), (0.6, 90, 40)},
the time units are arbitrary. On Fig. 3 one can see that
the sub-trigger order has a significant impact on the mean
computing time. In this particular case, the total time
increase is50% when going from the(1342) permutation
to the(2431) one.

It is important to notice that the total computing time is
the mean accept time in addition to the mean reject time.
Since the HLT has to reject most of the events accepted at
Level-1, a small fraction of the time will be used in accept-
ing events. The above probabilities will be10−3 such that
〈Tr〉 will dominate and cannot be optimized. Still the tails
in the timing distribution will be reduced if one uses the
specified method to reduce the mean accept time.

TRIGGER PARAMETERS DEFINITION

The computation of the trigger response has to be han-
dled coherently when a change in the selection criteria oc-
curs. It should also be possible to store the trigger settings

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(1
34
2)

(1
43
2)

(1
42
3)

(3
14
2)

(1
32
4)

(1
23
4)

(1
24
3)

(3
12
4)

(4
13
2)

(3
41
2)

(4
12
3)

(4
31
2)

(3
42
1)

(4
32
1)

(4
21
3)

(4
23
1)

(3
21
4)

(2
13
4)

(2
14
3)

(2
31
4)

(3
24
1)

(2
41
3)

(2
34
1)

(2
43
1)

permutations

ti
m

e
 i
n

c
r
e
a
s
e

Figure 3: Average accept time for each permutation of the
triggers elements.

with the trigger outcome. A mechanism is provided by the
CARF framework [5] to address these issues. Each algo-
rithm, which in the HLT is an element, should announce
what are the parameters and default values defining it’s be-
haviour. When the Element is queried to compute it’s re-
sponse, a list of the parameters and their values is provided
and the element computation is fired. The result of the Ele-
ment and it’s corresponding query can be stored for future
analysis. This mechanism allows to cache an algorithm re-
sult and return the cached value if the same query is issued
twice for the same event.

The definition of the HLT tree takes the form of a series
of query’s (RecQuery) constructed in by aHighLevelTrig-
ger derived classes which follows a factory design pattern
[6]. An example of such a definition is given in Fig. 4. In
the implementation of the HLTsetup() method, the queries
and parameters associated with each element is defined.
The RecQuery name defines which element will be build
and thesetParameter method defines the parameters name
and values.

L2

L3

Full tracker
reconstruction

Calorimetric
Clustering

EtThr=23

EtThr=23
E/P barrel=1
E/P encap=2

ROOT

L25

Find a pixel seed

virtual void HighLevelTriggerTest::setup() {
// L2 Element
RecQuery l2("HLGL2EleTrigger");

l2.setParameter("EtThr",23);
// L25 connected to the L2
RecQuery l25("HLGL25EleTrigger");

l25.setComponent("mother1",l2);
// L3 connected with the L25
RecQuery l3("HLGL3EleTrigger");

l3.setParameters("EtThr",23);
l3.setParameter("EovP_barrel",1);
l3.setParameter("EovP_endcap",2);
l3.setComponent("mother1",l3);

// finally add the tree to the list of root’s
addRootTriggerElement(l3);

};

Figure 4: Example of the specification for a single electron
trigger with three levels. The required code to construct the
trigger tree is shown on the right

The factory based design is particularly useful to support
the construction of the HLT tree from a condition database.
The example shown on Fig. 4 defines the tree statically. To
dynamically define the tree, one has implemented a factory

that reads it’s configuration from an XML [7] file specify-
ing the elements, their parameters and how they are con-
nected. Fig 5 detail the XML content giving an equivalent
trigger tree as defined on Fig. 4. As in the static example,
each XML tag define the algorithm to be used and it’s as-
sociated parameters.

<?xml version="1.0" encoding="Latin-1" standalone="no"?>
<!DOCTYPE GlobalTrigger SYSTEM "./HighLevelTrigger.dtd">
<GlobalTrigger>
<L3EleTrigger>

<L25EleTrigger>
<L2EleTrigger>

<Parameter value="23" name="EtThr"/>
</L2EleTrigger>

</L25EleTrigger>
<Parameter value="23" name="EtThr"/>
<Parameter value="1" name="EovP_barrel"/>
<Parameter value="2" name="EovP_endcap"/>

</L3EleTrigger>
</GlobalTrigger>

Figure 5: XML specification of the trigger tree for the se-
lection of an electron.

CONCLUSIONS

The CMS experiment has defined reconstruction algo-
rithms [2] for the selection of electrons, muons, taus, miss-
ing Et, jets which are implemented in the ORCA software.
The HLT steering software, also part of ORCA, eases the
combination of the selection algorithms to define the HLT
selection logic. The selection logic is represented in a tree
and the definition of the tree can be done via an XML file.
Optimisation of the tree evaluation sequence as been pur-
sued and show significant improvement in the mean accept
time for events selected with high efficiency.

ACKNOWLEDGMENTS

C.D. would like to thank the Belgian FNRS for sup-
porting him as research fellow. Thanks to our supervisor
V. Lemâıtre for supporting this work. We would like to
thank E. Burton for her help in the design of the optimisa-
tion algorithm.

REFERENCES

[1] The Compact Muon Solenoid – Technical Proposal,
CERN/LHCC94-38

[2] CMS Collaboration, ”The Trigger and Data Acquisition
project, Volume II.Data Acquisition & High-Level Trigger.
Technical Design Report”, CERN/LHCC2002-26

[3] HLT web page, http://www.fynu.ucl.ac.be/he/hlt/

[4] ORCA web page, http://cmsdoc.cern.ch/orca/

[5] CMS Collaboration, V. Innocente,CMS reconstruction and
analysis: an object oriented approach, Elsevier, Computer
Physics Communications110(1998) 192-197

[6] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
Design Patterns, Addison-Wesley Professional; 1st edition
(January 15,1995)

[7] XML specification, http://www.w3.org/TR/REC-xml/

