
AUTHENTICATION / SECURITY SERVICES IN THE ROOT
FRAMEWORK

G. Ganis, CERN#, Geneva, Switzerland
gerardo.ganis@cern.ch

Abstract
The security services available in the ROOT framework
[1] are described, focusing in particular of client / server
authentication.

INTRODUCTION
Security is a major concern of any modern software

system. ROOT users are confronted to the problem when
they need to access a server daemon running on a remote
host. Currently there are three basic types of daemons
accessed from a ROOT interactive session: file servers
(rootd, xrootd, httpd, rfiod), the proofd daemon used to
start the master and worker servers in the Parallel ROOT
Facility [2], and interactive sessions setup as servers (by
means of the TServerSocket class). Two aspects of
security are relevant here: authentication, where the client
proves her identity to the server; and confidentiality,
either of generic data or of authentication-related data.

Recently the security services of ROOT have been
restructured with the aim of making the system more
complete and flexible to cover most of the needs ROOT
users will have using the coming clusters and computing
facilities.

This paper is organized as follows. In the next section
we review the available authentication protocols and the
features of the framework in which they are embedded. In
the following section we will discuss the additional
requirements from PROOF. The future plans are then
presented, followed by a summary.

AUTHENTICATION SERVICES
Authentication Protocols
The needs of ROOT users in terms of client / server
authentication vary significantly: from the case where
read-only access is given to a file, requiring weak - or
even no – authentication, to the case where a daemon has
to be run with super-user privileges, therefore requiring
more protection. It is therefore important to offer a wide
spectra of protocols to cover as much as possible the
potential situations. The protocols presently available in
ROOT are:

• A fast identification protocol, based on the
matching of the user and group IDs, intended for
use in intrinsically secure situations.

• Password-based protocols, whose strength

depends on the underlying implementation;
• Two of the mostly used network authentication

protocols, Kerberos [3] and GSI [4].

Password-based protocols
The password-based protocols typically have the
advantage of requiring none or very little setup, and
therefore are very convenient in many circumstances.
Users are given the possibility to define a ROOT-specific
password, which may give additional protection by
limiting the damage of password disclosure.
Server may also test the system password files (e.g.
/etc/passwd) but this typically requires special
privileges, since most of the systems use shadow
passwords to protect the password section of the system
files. Workarounds to allow regular privileged daemons to
access the system password files requires delegation to a
third daemon with the right privileges; if AFS is available
ROOT servers can be configured to use the AFS API’s to
perform this task. Another possibility is to use the sshd
daemon: the server generates some information uniquely
identifying the session and the client, and requires the
latter to prove her identity by scp-ing a file with related
secret information in the area she wants to log on the
remote machine; since the file to be scp-ied is session
dependent, it cannot be re-used for reply attacks; scp is
invoked on the command line, so the user can use her SSH
key files.
Basic password-based protocols are susceptible of
network-based dictionary attacks. Immunity to this kind
of attacks (strong authentication) requires the use of
asymmetric keys. Protocols based on these techniques are
available on the market [5].
ROOT supports one of these protocols, the Secure Remote
Password protocol [6], SRP, based on asymmetric key
exchange technology; it requires the user to logon once on
the remote to create the secrets related to the password;
the advantage of this method is that the password never
goes over the network, but it is only used to create
credential information to negotiate with the server. It also
provides a session key for subsequent encryption.
Additional features available for the password-based
protocols include support for {host ,user} equivalence via
the usual /etc/hosts.equiv and $HOME/.rhosts files,
and for auto-login via the standard $HOME/.netrc and an
extension of this file ($HOME/.rootnetrc) provided to
serve also SRP.

Kerberos V
The Kerberos network authentication protocol was one of

#Funded by Bundesministerium für Bildung und Forschung, Berlin,
Germany

the first attempts to solve the problem of user / service
mutual authentication in consistent way, using strong
cryptography and a centralized trusted third party (the
Kerberos server) to deliver tickets. Though Kerberos has
some weak points [7], it still provides a good solution to
the authentication problem and it is still widely used [8].
ROOT applications are kerberized using the standard
Kerberos 5 API’s krb5_sendauth and krb5_recvauth.
Clients need a principal, servers use the “host” service.
ROOT exploits the possibility to forward the credentials
for later use and to use the file .k5login to provide user-
equivalence, allowing to disentangle the target username
from the principal name.

GSI
Finally, ROOT may also be configured to use Globus
Security Infrastructure deployed on current grids. This
requires the availability of the security bundles of the
Globus Tool Kit [4]. As for Kerberos, the authentication
handshake is delegated to the appropriate gss_assist
API functions, which are used to acquire the credentials
from a valid proxy or host certificate and to initiate or
accept a security context over the open connection.
Servers started with regular user privileges can use the
user proxy certificate to authenticate clients. The location
and list of user, host certificates and gridmap files are
configurable. Globus delegation features are exploited by
servers to export the client credentials to a shared memory
segment for later use.

Server Access Control
A key feature of server security is the possibility to allow
or deny access to a given request, on the base of host from
where it comes from and/or the user account (and
possibly the service) where it is directed. Server
administrators can specify their preferred access rules in a
special configuration file system.rootdaemonrc; the
default version of this file is created under $ROOTSYS/etc
while configuring the ROOT installation. The default list
includes the available password- and network-based
protocols, enabled by default for any hosts, user, service.
The configuration file allows to specify rules that apply to
subsets of machines either by accepting wild cards in
FQDNs or by accepting sub-domain specification; it is
possible to specify different rules for access to file
servers, proofd’s or interactive servers; finally, it is
possible to deny access to a given user, or to require
stronger authentication protocols for a given user.
Examples of typical directives are shown here:

Client / Server Protocol Negotiation
ROOT supports a simple mechanism for client/server
negotiation. The mechanism uses the list of protocols
available to the client; the default list is created by
configure and stored in a special file $ROOTSYS/etc/
system.rootauthrc; the list also specifies the order of
preference in which the protocols should be chosen. As an
example, the default entry for a ROOT distribution
compiled with Kerberos 5 support is:

The entry indicates that when a client contacts a server
she will first attempt to use the regular password-based
protocol, i.e. her special ROOT-password; if the server
policy accepts this protocol it will continue the
negotiation handshake; otherwise it will send back to the
client the list of protocols (if any) that it may accept from
this particular client (based on the related entry in the
rootdaemonrc file previously discussed). There is no
overhead if the first attempt is successful; the server takes
control on the protocol choice from the second step in the
iteration.
The client can modify the default information by
specifying her own preferences in a private file
$HOME/.rootauthrc , host-, user- and service- base. The
file allows also to change many other defaults, like the
location and names of the globus certificate directory and
user certificate and key files.

ROOT token
ROOT can be configured in such a way that a unique and
secret tag is assigned to a successful authentication
attempt; this token can be used by the client to open an
additional connection to ROOT servers running on the
same remote host without going through the full
handshaking of the authentication process: this may
considerably speed-up the process of user identification,
especially for SSH and GSI protocols. On the client side,
a token correspond to an instance of the TSecContext
class: its validity is configurable, but can never extend
beyond the duration of the interactive session. On the
server side, token information is kept in dedicated tab
files.

Securing sensitive information
The transmission of sensitive information, like password
or tokens, over the network is secured using PKI
technology and symmetric ciphers.

Created at configure
default list usrpwd ssh krb5 uidgid

Allow use of ROOT-specific password;
else require SSH protocol
Access to ‘baduser’ is denied
default usrpwd:-baduser ssh:-baduser
Fast ID from the local domain
pc*.local.domain uidgid

PROOF cluster in the local Kerberos
realm or grid
*:proofd krb5 globus

Figure 1 Structure of the Authentication code in ROOT

At startup, the servers generate an asymmetric key pair,
which is kept in memory and whose duration validity is
the server lifetime. When a client comes in, the server
public key is used to protect the exchange of a
symmetric session cipher to be used to encrypt the
sensitive information during the authentication
handshake. The cipher also expires at the end of the
interactive session.

Code structure
Figure 1 shows the structure of the authentication code
as presently implemented in ROOT. When a remote
connection is needed, the client class instantiates a
TSocket class which is responsible to contact the

appropriate service on the remote side; if
authentication is required, both sides delegate the
handshaking to dedicated code, responsible, if
required, to load the relevant plug-ins and to create and
store the token.

PROOF

The Parallel ROOT facility, PROOF [2], is a virtual
machine aimed at giving the physicists the possibility
to analyze much larger sets of data on a shorter time
scales, making use of the inherent parallelism in event
data.

Figure 2 Startup of a PROOF virtual machine

PROOF consists of a 3-tier architecture (Figure 2): the
ROOT client session, the PROOF master server and the
PROOF worker servers. During startup the user
connects from his ROOT session to a master server on
a remote cluster and the master server in-turn creates
worker servers on all the nodes in the cluster. At each
step authentication may be required. While the first
step (client-to-Master) is basically the same as for any
client/server session, in the PROOF system there is the
additional complication of the Master authentication
vis-à-vis of the workers and, potentially, of the workers
authentication vis-à-vis of data servers.
If the PROOF cluster is closed to the outside world,
with only the Master allowing incoming connections,
strong authentication is required only between Client
and Master: a weak protocol (fast ID, host equivalence)
or even no authentication will be sufficient for the
remaining steps.
However, for clusters spread over different sites, strong
authentication may be required at all stages, making a
mechanism for delegation or credential forwarding
unavoidable. Such mechanism are naturally provided
by network authentication protocols like Kerberos and
GSI. Servers can extract from the client ticket or proxy
the appropriate information to act as clients vis-à-vis of
the next-stage servers, on behalf of the mandating
Client. As mentioned before, this feature is exploited in
ROOT for both Kerberos and GSI.
For password-based protocols, credential forwarding
means sending the password to the server. This is
implemented in PROOF: the password may be sent,
encrypted, at the end of the Master or Worker startup.
However, for SRP, since it formally spoils one of the
basic features of the protocol (“passwords never leave
the client machine”), this feature is left as an option to
the user (note, however, that the packets containing an
encrypted SRP password cannot be used for a reply
attack).
Encrypted-password forwarding requires that the
password is the same on all nodes requiring
authentication: if this is not the case, a manual setup is
needed, using the auto-login facilities mentioned
above.

FUTURE PLANS
Future plans focus mainly on the consolidation of the
authentication code structure and the support for secure
connections.
Consolidation of the underlying structure. The present
implementation suffers from being the evolution of a
much less ambitious design whose purpose aimed to
provide basic authentication services to two standalone
light daemons, rootd and proofd; this brought in the
code an asymmetry between client and server sides,
which has been reduced but not eliminated; a cleaner
design, simplifying and consolidating the underlying
structure, is envisaged. For this purpose, the integration
of XrdSec, the authentication framework of the xrootd

daemon [9], recently been included in ROOT, is under
evaluation. XrdSec is a general purpose authentication
framework, where protocols can be plugged as shared
libraries; it provides server access control,
authorization services, and a built-in simple protocol-
negotiation mechanism. At present, only available are
plug-ins for Kerberos 4 and 5. Several plug-ins are
under development, including modules for generic
password-based authentication and GSI.
 Secure connections. It is foreseen to support data
confidentiality in two ways. The first uses the cipher
exchanged during authentication to encrypt any
subsequent exchange; this requires optimized use of
buffers for encryption and transmission, to minimize
overload. The second provides a TSocket class,
TSecureSocket, initiating a standard SSL connection
with any server supporting SSL; this would allow
TWebFile to open files on web servers running the
https protocol. Prototypes for both implementations
are under test.

SUMMARY
The security services of the ROOT system have been
recently reviewed and augmented. The improved
security modules provide a flexible authentication
framework supporting a complete set of protocols, and
mechanisms for credential forwarding in the PROOF
system. Future plans include the consolidation of the
underlying structure and support for secure
connections.
The resulting system should cover most of the needs of
the ROOT community.

ACKNOWLEDGEMENTS
The author would like to thank F. Rademakers, M.

Ballantjin and P. Canal for useful discussions,
suggestions and comments.

REFERENCES
[1] ROOT: http://root.cern.ch/
[2] PROOF: http://pierre.mit.edu/proof/
[3] MIT Kerberos: http://web.mit.edu/kerberos/www/
[4] Globus: http://www.globus.org/
[5] For a more detailed discussion, see R. Sandhu, M.

Bellare, R. Ganesan, ”Password-Enabled PKI:
Virtual Smartcards vs. Virtual Soft Tokens”,
proceedings of 1st Annual PKI research Workshop,
2002, p. 89-96, and references therein.

[6] SRP: http://srp.stanford.edu
[7] See, for example, S. Garfinkel, G. Spafford, A.

Schwartz, “Practical Unix & Internet Security”, 3rd
Ed., 2003, O’Reilly & Associates Inc.

[8] See M. Crawford, this conference.
[9] Xrootd: http://xrootd.slac.stanford.edu/; see also A.

Hanushevsky, this conference.

