
EVENT DATA MODEL IN ATLAS

E. Moyse, CERN, Geneva, Switzerland∗

F. Åkesson, CERN, Geneva, Switzerland†

Abstract

The event data model (EDM) of the ATLAS experiment
is presented. For large collaborations like the ATLAS ex-
periment common interfaces and data objects are a neces-
sity to insure easy maintenance and coherence of the exper-
iments software platform over a long period of time. The
ATLAS EDM improves commonality across the detector
subsystems and subgroups such as trigger, test beam re-
construction, combined event reconstruction, and physics
analysis. Furthermore the EDM allows the use of common
software between online data processing and offline recon-
struction. One important component of the ATLAS EDM is
a common track class which is used for combined track re-
construction across the inner tracking detectors and is also
used for tracking in the muon detectors. The structure of
the track object and the variety of track parameters are pre-
sented. For the combined event reconstruction a common
particle class is introduced which serves as the interface
between event reconstruction and physics analysis.

INTRODUCTION

This report gives an overview of how the ATLAS EDM
is constructed within the constraint of the ATLAS comput-
ing model and shows the benefits of the approaches taken.
All subdetectors are represented in the EDM but here em-
phasis is given to the tracking and Inner Detector software,
and these are used as examples.

THE ATLAS COMPUTING MODEL

The ATLAS detector [1] will produce up to one PetaByte
of data per year, a vast amount of information which pro-
hibits the wide distribution of raw data to worldwide col-
laborators. To enable physicists to analyse the data at re-
mote sites two additional stages of datasets are introduced:

• The Event Summary Data (ESD) which contains the
detailed output of the detector reconstruction and will
be produced from the raw data. It will contain suffi-
cient information to allow particle identification, track
re-fitting, jet calibration etc. thus allowing for the
rapid tuning of reconstruction algorithms and calibra-
tions. The target size for the ESD is 500 kB per event.

• The Analysis Object Data (AOD) which is a summary
of the reconstructed event, and contains sufficient in-
formation for common analyses. Several tailor–made

∗ edward.moyse@cern.ch
† fredrik.akesson@cern.ch

Raw Data~1.6Mb/Event

Event Summary 
Data (ESD)

Analysis Object 
Data (AOD)

~500Kb/Event

~100Kb/Event

Analysis

Figure 1: The layers of the ATLAS computing model, each
smaller than the last.

streams of AOD’s are foreseen for the different needs
of the physics community. The AOD can be produced
from the ESD and thus makes it unnecessary in gen-
eral to navigate back and process the raw data, adding
significant cost and time benefits. The target size for
the AOD is 100 kB per event.

Inevitably, there will be some overlap between the different
reconstruction realms: for example, some objects will exist
in both AOD and ESD.

There will also be ”tags” on each event, indicating some
general features of the event, and thus allowing the quick
access of the required events. The target size for the tags is
1kB per event.

REQUIREMENTS FOR THE EDM

The ATLAS EDM is shaped by many considerations: it
must allow the correct level of modularity to fulfill the con-
straints of the computing model with respect to the differ-
entiation between raw data, ESD and AOD.

It must also fulfill the requirements of the Athena soft-
ware framework [4] (based on GAUDI) used by ATLAS.
The ATLAS EDM must interact cleanly within this frame-
work and the associated tools and services it provides.
Moreover the EDM must follow ATLAS coding standards,
such as enforcing the separation of event and non-event
data - e.g. by avoiding having detector description 1 in the

1ATLAS uses GeoModel for its detector description



event data. In fact in Athena there are different types of
storage used for transient event data (i.e. data that only ex-
ists for an event) and data with a lifetime of the run. The
ATLAS transient event store has two instances, the short
term storage is called StoreGate, whilst the longer term
store is called DetectorStore.

The EDM must be persistifiable: ATLAS uses POOL [5]
to read and write data to disk, and therefore it must be pos-
sible to store all EDM object in POOL format. This is a
non-trivial requirement and has set serious constraints on
the allowed designs of the EDM. For example, links be-
tween persistified objects have to be possible. Normally
this could be done with pointers and references (for exam-
ple, linking a track to the measurements used to produce it)
but these cannot easily be persistified and so ”DataLinks”
must be used instead. Links across levels (i.e. from AOD
to ESD) are another necessary complication, and are re-
stricted.

ATLAS has adopted CLHEP [5], and therefore the EDM
must support it: this has then benefit of promoting code-
readability, and portability, since all of ATLAS uses the
same classes. However it has also caused problems with
persistency (some CLHEP classes were not originally per-
sistifiable, and were unnecessarily large when written to
storage).

Finally, it must be possible to navigate from the EDM
data object to the underlying simulated event (i.e. it must
be possible to access the ‘truth’ from the EDM objects).

Above and beyond all these technical requirements, the
EDM must promote code re-use by allowing the factoring
out of common tools and common data objects. For exam-
ple, data objects should, if possible, be shared between the
online trigger (which has strong requirements, such as be-
ing able to run in a multi-threaded environment and speed)
and the offline reconstruction software, as well as between
the various sub-detector systems. At the same time the
EDM must minimise unnecessary dependencies.

THE ATLAS DETECTOR

ATLAS has two types of sub-detector systems: trackers
(the Inner Detector [6] and Muon Spectrometer [7]), which
measure momenta of charged particles, and calorimeters
(Tile [3] and Liquid Argon [2]), which measure energy de-
positions. As mentioned before, a major aim in the design
of the EDM is to share as much code as is possible within
these common sub-system types.

Calorimeters

The two types of calorimeter have different data formats
at the raw data level, however for reconstruction the EDM
uses one common calibrated input object, “CaloCell”.
CaloCells can be generated either from the raw data or
simulation. For example, fig. 2 (which is a schematic rep-
resentation of the calorimeter reconstruction chain) shows
the raw data being fed to “CellMaker” algorithms, which

produce CaloCells. From this moment on data classes are
common to both calorimeter types.

Neighbouring CaloCells are used (by “CaloTower-
Maker”) to produce calorimeter “towers”, then these tow-
ers (as well as cells) are taken (by “CaloClusterMaker”)
to construct “clusters”, collections of calorimeter elements
(which can even contain clusters themselves).

A navigation scheme allows access to constituent data
objects e.g. it is possible to retrieve all the CaloCells used
to create an EnergyCluster.

All calorimeter data classes inherits from a four-
momentum interface which allows the use of common tools
only requiring kinematic information.

Tracking Detectors

As with the calorimeter, a basic requirement for the
EDM is to support different tracking devices with shared
code, e.g. the muon chambers and drift tubes, the inner de-
tector transition radiation tubes and silicon detectors must
all be provided for by common tracking software.

The most obvious requirement is a common track class,
but more than that, the EDM needs standard definitions of:

• Track parameters (on all the various surfaces found
along the track);

• Interfaces to hit-clusters, drift circles, etc;

Tracking must handle many different coordinate frames,
as a track can span the entire detector and have measure-
ments on many different surfaces (i.e. discs, planes, cylin-
ders, and so on). However, the various tracking tools and
algorithms must not be expected to handle the geometry of
the detector. Generalised tools allow tracking to work on
both the Inner Detector and the Muon Spectrometer tracks.
This can best be explained with the aid of fig. 3, which
shows an overview of the Tracking reconstruction chain.

Bytestream convertors take the data from the detector,
and form the raw data objects. These are then used to create
”prepared raw data”, i.e. clusters (for example, from the
pixel detector) or drift circles (for example, from the muon
monitored drift tubes).

Some of the tracking sub-detectors return what are es-
sentially one-dimensional measurements, so these must be
combined to form two-dimensional “SpacePoints”.

The ”PrepRawData” (along with the SpacePoints) can
then be used to find tracks. Finally, the tracks can be used
to find vertices, or to create the TrackParticles (for physics
analysis at the AOD level).

Common Track One of the most important elements
in the ATLAS EDM is the common Track. It must work in
a wide range of applications, from:

• online (where speed and the ability to work in a multi-
threaded environment are important requirements);

• alignment studies (which need very detailed informa-
tion);



Raw
Channel

CellMaker

CaloCell

CaloTower
Maker

CaloCluster
Maker

CaloTower Energy
Cluster

Figure 2: Schematic diagram of calorimeter reconstruction. The top line contains the data objects, whilst the bottom line
shows the algorithms used to process them. Data flows from left to right.

SpacePointRawData
Objects

SpacePoint
Formation

Track
Finding

Track

Clustering +
DriftCircle
Formation

Prep
RawData

ByteStream
Converters

TrackParticle

Primary
Vertex

Post
Processing

Figure 3: Tracking reconstruction chain. The boxes on the top represent data objects, whilst the boxes on the bottom show
the algorithms which work on them. The arrows show the direction of data flow.

• general reconstruction.

Tracks at ESD level consist of fitted measurements on mul-
tiple surfaces, and are the output from the fitters, and the
input to the combined reconstruction (all reconstruction
packages should use the same track class).

These tracks are (necessarily) relatively large objects and
for AOD something more lightweight is needed: therefore
“TrackParticles” are created from Tracks. These objects
contain summary information about parent track (number
of hits on track etc), as well as the perigee parameters.

They are physics analysis objects with 4-momenta in
the physics frame, and therefore (as with the calorimeter
data objects) inherit from the common momentum inter-
face, I4Momentum.

They can be used for vertex finding, but not re-fitting etc.
(as the hits/measurements are missing).

Common Tracking Tools The common tracking tools
are not really the focus of this report, but the ability to eas-
ily write them is both an important consequence and an
important requirement of the EDM. Currently, there are:

• Track fitters - all fitting tools must inherit from a com-
mon interface. At the moment there are two fitters
provided, but it is expected that more will follow;

• Extrapolator - this handles the propagation and extrap-
olation of track parameters (and their errors) to arbi-
trarily oriented surfaces [8];

• Vertexing - there are generic mathematical tools pro-
vided in Tracking, with specific implementation avail-
able in the InnerDetector area [9];

• Visualisation - it is possible to use visualisation tools,
to examine the surfaces (i.e. using HepVis) and the
tracks, and the tracking hits (i.e. with Atlantis), which
is very useful for debugging purposes.

Fitters are inherently ESD-level tools (as they require the
hits on the tracks) whilst the vertexing, visualisation and
extrapolation tools can work on either AOD-level Track-
Particles or ESD-level Tracks

TrkPrep
RawData

SiCluster

TRT_Drift
Circle

PixelGanged
Cluster

Ambiguities
excludes
pairwise

InDet
RawData

SCT_RDO
RawData

TRT_RDO
RawData

uses

PixelRDO
RawData

uses

uses

TrkSpace
Pointuses

Figure 4: Inner Detector Input EDM. On the left are the
various raw data classes, all inheriting from InDetRaw-
Data. They are used to create the Inner Detector “Prepared
Raw Data” classes, TRT DriftCircle and SiCluster. SiClus-
ter is then used to form SpacePoints, and ambiguities in the
SiClusters are resolved by PixelGangedClusterAmbiguities

Inner Detector Fig. 4 shows the EDM for the In-
ner Detector. Raw data classes (TRT RDORawData,
SCT RDORawData and PixelRDORawData) inherit from
a common base class (InDetRawData) and are used to cre-
ate the “prepared raw data” classes, TRT DriftCircle and



SiCluster, which are then used for track finding. Some
SiClusters are then used to create SpacePoints (as ex-
plained above). Finally, because the readout from the AT-
LAS pixel detector elements are ganged together, there is
some ambiguity between where a pixel hit actually is in
space. This is resolved by track finding, and the result is
stored using the PixelGangedClusterAmbiguities class.

TrkPrep
RawData

MuonCluster

MuonDrift
Circle

MuonDigit

Rpc/Csc/Tgc
Digit

MdtDigit

uses

uses

Figure 5: Muon Input EDM. On the left are the various
raw data classes, all inheriting from MuonDigit. They
are used to create the Muon Spectrometer “Prepared Raw
Data” classes, MuonDriftCircle and MuonCluster.

Muon Detectors Fig. 5 shows the EDM for the Muon
Spectrometer. As with the Inner Detector, the raw data
classes (MdtDigit and the cluster digits — Rpc,Csc and
Tgc) inherit from a common base class, MuonDigit. These
raw data classes are used to create the “prepared raw data”
classes, MuonDriftCircle and MuonCluster, which are used
for track finding.

Analysis Objects

Analysis
Object

IParticle I4Momentum INavigable

Figure 6: Representation of an analysis object, inheriting
from the IMomentum, IParticle and INavigable interfaces.
Examples of analysis objects would be muons, bjets, taus
etc.

Fig. 6 shows a generic analysis object. Since it rep-
resents a physical object, it inherits from I4Momentum
and IParticle, whilst the INavigable interface allows (in
the same manner as the calorimeter objects) navigation
netween constituent objects.

Tools which only require kinematic information will just
use the I4Momentum interface, whilst other, more analyses
might need more detailed information. In any case, the use
of common interfaces dramatically simplifies the analysis
code.

Trigger

The ATLAS trigger [10][11] is responsible for the online
event selection. As such, a minimum requirement is that
the EDM stores the trigger criterion (or hypotheses) which
were passed for each level of the trigger (Level-1, Level-2
and Event Filter). Beyond that, if space permits it would
be useful to store sufficient information to allow the trigger
algorithms to be re-run, for example for Level-2 this is:

• Track parameters

• Spacepoints on the track

• Calorimeter Clusters

• EM shower information

CONCLUSION

ATLAS Event Data Model uses abstract interfaces and
shared data objects, to allow the easy development of com-
mon tools. The EDM is now stable and fully supports the
ATLAS computing model. Further refinements on the ex-
act composition of the ESD and AOD will be needed, but
the ATLAS EDM itself provides a solid basis for the fur-
ther development of analysis code, and data-taking with
ATLAS.

REFERENCES

[1] ATLAS Collaboration, Technical Proposal for a General-
Purpose pp Experiment at the Large Hadron Collider at
CERN, CERN/LHCC/94-43

[2] ATLAS Liquid Argon Technical Design Report ,
CERN/LHCC/96-41, December 1996

[3] The ATLAS Tile Calorimeter Technical Design Report ,
CERN/LHCC/96-42, December 1996

[4] Athena Developer Guide (draft), version 2, Athena
website, http://atlas.web.cern.ch/Atlas/GROUPS/ SOFT-
WARE/OO/architecture/General/index.html

[5] D. Düllmann et al., The LCG POOL Project: General
Overview and Project Structure, CHEP 2003 Proceedings,
MOKT007

[6] ATLAS Inner Detector Technical Design Report,
CERN/LHCC 97-16, April 1997

[7] ATLAS Muon Spectrometer Technical Design Report,
CERN/LHCC/97-22, May 1997

[8] A. Salzburger, The new Extrapolation Package in the ATLAS
Tracking Realm, Presented at CHEP 2004

[9] A. Wildauer and F. Åkesson, Vertex Finding and B-tagging
Algorithms for the ATLAS Inner Detector, Presented at
CHEP 2004

[10] ATLAS First-Level Trigger Technical Design Report, AT-
LAS TDR-12, June 1998

[11] ATLAS High-Level Trigger Data Acquisition and Controls
Technical Design Report, ATLAS TDR-16, June 2003


