
Minimal Core Semantics

No application-level semantics
Because of legacy modules, and there is
no way to predict future semantics.

No ordering requirements
Improves decoupling, since there is no
“right” ordering for every application.

Non-atomic
Range of stronger requirements provided
by higher level tools.

PyBus

A Python Software Bus
Wim T.L.P. Lavrijsen

LBNL

A sofware bus allows for the discovery, installation,
configuration, loading, unloading, and run-time replacement
of software components, as well as channeling of inter-
component communication. The Python programming
language encourages a modular design of software written in
it, but it offers little or no component functionality. However,
the Python language and interpreter have sufficient hooks to
implement a thin, integral layer of component support in the
form of a Python module. This poster describes such a
module, PyBus, with which the concept of a software bus is
realised in Python.

http://cern.ch/wlav/pybus

Self-describing objects

Builtin into the Python language
No further requirements on the bus or on
modules/applications.

Method/Data transformations
Convert data types to/from module native
types and allow adaptive behaviour.

Method/Data transmission
Automatic marshalling of both data types
and service types.

Dynamic classing

Builtin into the Python language
No further requirements on the bus or on
modules/applications.

Create new types on-the-fly
Allows old/legacy applications to work
with newly defined types.

No re-linking necessary
System can remain running, while new
functionality is added (even written).

An Example

Example: setup PyROOT in an Atlas working environment,
using their Code Management Tool. 1) User requests ROOT
to be connected. 2) Configuration of PyBus instructs it to use
AtlasPyROOT environment to connect ROOT. 3) PyCMT is
used to setup the proper environment. 4) PyROOT is loaded
into the Python interpreter, pre- and post-configuration of the
PyROOT module is handled. 5) The module is “injected”
into the user module namespace as if imported.

PyBus

PyROOT

PyCMT

U
se

r I
nt

er
fa

ce
(eg

. a
th

en
a.

py
)

1| connect('ROOT')
2| setup AtlasPyROOT

3| return new
environment

4| set environment, load,
initialize

5| enable, as if
imported

Anonymous communication

Address based publish/subscribe
String, regex based: no links or references,
but need to agree on conventions.

Dynamic architecture changes
Clients don't care which modules serve
them, services don't care who consumes.

Policies for communication
Confirmation not a priori necessary, but
can be implemented (callbacks).

Space Decoupling

PyBus

Module User Interface

User Interface

User Interface

Time Decoupling

PyBus

Module

User Interface

PyBusModule

User Interface

Time

Synchronization Decoupling

PyBus

Module

User Interface

