

The ALICE High Level Trigger

Matthias Richter¹

T. Alt³, H. Helstrup², V. Lindenstruth³, C. Loizides⁴, G. Øvrebekk¹,
D. Röhrich¹, B. Skaali⁵, T. Steinbeck³, R. Stock⁴, H. Tilsner³,
K. Ullaland¹, A. Vestbø¹, T. Vik⁵ and A. Wiebalck³

for the ALICE Collaboration

¹Department of Physics and Technology, University of Bergen, Norway
 ²Faculty of Engineering, Bergen University College, Norway
 ³Kirchhoff Institute for Physics, University of Heidelberg, Germany
 ⁴Institute for Nuclear Physics, University of Frankfurt, Germany
 ⁵Department of Physics, University of Oslo, Norway

Motivation: Data Rate Reduction

event sizes (zero suppressed):

The HLT system in the ALICE data flow

• • •

The HLT system in the ALICE data flow

Data flow in the HLT

36 TPC sectors, ITS, TRD,

DDL: Detector Data Link (optical fiber)

HLT-RORC: ReadOut Receiver Card (HLT type with FPGA Co-Processors)

Data flow in the HLT

36 TPC sectors, ITS, TRD,

DDL: Detector Data Link (optical fiber)

HLT-RORC: ReadOut Receiver Card (HLT type with FPGA Co-Processors)

runs on a PC-cluster

- 450 500 nodes
- input from
 - ~250 HLT-RORCs

Track reconstruction in the TPC

TPC occupancy:

estimation:

 $dN_{ch}/d\eta = 8000$: 20000 tracks in the TPC

two approaches:

Cluster finding Reconstruct space points from 2D clusters

Connect space points into tracks and fit them to a model (helix)

- Sequential tracking
 - Cluster finding (weighted mean)
 - Track follower
- Iterative tracking
 - Hough transform on Raw ADC-Data gives track candidates
 - Cluster fitting with respect to track parameters

Sequential tracking – dataflow

Iterative tracking – dataflow

Performance of track reconstruction

M. Richter, CHEP 2004, Interlaken

Data compression for TPC data

Data compression for TPC data

Global techniques: Applied on the scale of clusters and tracks.

Cluster position represent small deviations, δ , from the track fit and is subject to detector resolution.

Cluster widths are a function of track parameters

Describe the clusters within the track model, and store only deviations from the model.

Data compression II

TPC display before and after cluster asignment and removal M. Richter, CHEP 2004, Interlaken

Components of the HLT system

- Commercial off-the-shelf PCs
 - ~250 dual processor PCs equipped with HLT-RORC cards with FPGA Co-processor HLT Front End Processor (FEP)
 - ~250 dual processor compute nodes

HLT Readout Receiver Card

Components of the HLT system

- Commercial off-the-shelf PCs
 - ~250 dual processor PCs equipped with HLT-RORC cards with FPGA Co-processor HLT Front End Processor (FEP)
 - ~250 dual processor compute nodes
- Network Communication
 - NIC (Gigabit Ethernet, InfiniBand,...)
 - Network protocol (TCP)

HLT Readout Receiver Card

Local Pattern Recognition in the onboard FPGA

Components of the HLT system

- Commercial off-the-shelf PCs
 - ~250 dual processor PCs equipped with HLT-RORC cards with FPGA Co-processor HLT Front End Processor (FEP)
 - ~250 dual processor compute nodes
- Network Communication
 - NIC (Gigabit Ethernet, InfiniBand,...)
 - Network protocol (TCP)
- Fault-tolerant cluster management
 - Cluster Interface Agent (CIA)
 - low cost sensor and actuator
 - allows system detection and repair decoupled from the node's software system
 - see talk of R. Panse this conference for details

HLT Readout Receiver Card

Local Pattern Recognition in the onboard FPGA

Management of the HLT software

- Analysis components
 - developed in the ALICE offline framwork AliRoot
 - written in C++
 - data internally organized in simple C structures to minimize size
 - abstract interface connects analysis components to either online or offline framework

- Publisher-Subscriber Interface
 - Communication framework running on HLT cluster
 - Common interface for communication between processes on the same node and also between different nodes across the underlying network
 - Generic modular framework allowing arbitrary connectivity metric (one-to-many, many-to-one)
 - see talks of T. Steinbeck this conference for more details

Prototype for one TPC sector

- Simulated 'realistic' pp events
- 25 piles (~400 particles in TPC)
- Full track reconstruction
- Cluster finder + Track finder
- 19 Nodes, P3 800 MHz dual proc., Fast Ethernet Heidelberg HLT cluster

M. Richter, CHEP 2004, Interlaken

• The HLT will enhance the yield of rare cross-section signals in ALICE by online event reconstruction and/or data compression

- The HLT will enhance the yield of rare cross-section signals in ALICE by online event reconstruction and/or data compression
- The system will consist of up to 500 dual processor PCs, partially equipped with FPGA Co-processors

- The HLT will enhance the yield of rare cross-section signals in ALICE by online event reconstruction and/or data compression
- The system will consist of up to 500 dual processor PCs, partially equipped with FPGA Co-processors
- Current online tracking performance is sufficient for $dN_{ch}/d\eta < 4000$ already now

- The HLT will enhance the yield of rare cross-section signals in ALICE by online event reconstruction and/or data compression
- The system will consist of up to 500 dual processor PCs, partially equipped with FPGA Co-processors
- Current online tracking performance is sufficient for $dN_{ch}/d\eta < 4000$ already now
- Data modeling indicate compression factors of about 10 with acceptable efficiency loss

- The HLT will enhance the yield of rare cross-section signals in ALICE by online event reconstruction and/or data compression
- The system will consist of up to 500 dual processor PCs, partially equipped with FPGA Co-processors
- Current online tracking performance is sufficient for $dN_{ch}/d\eta < 4000$ already now
- Data modeling indicate compression factors of about 10 with acceptable efficiency loss
- HLT prototype performance on p-p for pileup-removal already very satisfactory, next integration tests following fall 2004

M. Richter, CHEP 2004, Interlaken

Thank you for your attention

Matthias Richter, Department of Physics and Technology, University of Bergen, Norway Matthias.Richter@ift.uib.no

M. Richter, CHEP 2004, Interlaken