
BABAR SIMULATION PRODUCTION – A MILLENNIUM OF WORK IN
UNDER A YEAR

D. A. Smith, SLAC, Menlo Park, CA, USA
F. Blanc, Univ. of Colorado, Boulder, CO, USA
C. Bozzi, D. Andrfeotti, INFN, Ferrara, Italy

Abstract
The BaBar experiment requires simulated events

beyond the ability of a single computing site to provide.
This paper describes the evolution of simulation and job
management methods to meet the physics community
requirements and how production became distributed to
use resources beyond any one computing center. The
evolution of BaBar simulation along with the
development of the distribution of the computing effort is
described.

As the computing effort is distributed to more sites
there is a need to simplify production so the effort does
not multiply with number of production centers. Proper
tools are created to be flexible in handling errors and
failures that happen in the system and respond
accordingly, to reduce failure rates and production effort.

This paper will focus on one cycle of simulation
production within BaBar as a description of a large scale
computing effort which was fully performed, and
provided new simulation data to the users on time.

Comments and questions contact Douglas Smith
(douglas@slac.stanford.edu)

SOME BABAR HISTORY
In early 2003, BaBar was into its third run cycle of data

taking (run 3). The experiment already had nearly 80 fb
-1

of data, and by the end of run 3 BaBar would have 110
fb

-1
 available for analysis. The physics community had

requested a certain amount of simulated events to
compare to this amount of data. The requests were for:
three times the luminosity for generic B-Bbar events;
matching luminosity for generic continuum events; and
various signal decay modes as requested. These three
requests are roughly similar in computing effort.

The total request translates to a number of events which
needs to be produced in simulation. In BaBar the
simulation and reconstruction code is tagged in major
software releases, and each major release is used in a
cycle of production which roughly matches the cycles of
data. These cycles of simulation production are
numbered, and this paper will mention three cycles in
detail, SP4, SP5 and SP6. In 2002, SP4 and had the
purpose of producing simulation for data run cycles 1 and
2, and to match the physics request would require 1.2

billion events. SP5 in 2003 would produce events for run
cycles 1-3, and need 1.6 billion events. For SP6 it was
recognised that the new reconstruction code would not
produce significantly different events than what was
produced in SP5, so SP6 would only produce events for
run cycle 4, and SP5 could be used for analysis of run
cycles 1-3. This change resulted in SP6 only needing 1
billion events to match the request.

This resulted in the fact that SP5 would be the largest
requested production cycle in BaBar, and would need a
greater amount of distribution of the computing effort to
get done on time. This effort was performed and finished
earlier this year, and I will concentrate on this effort as a
description of a complete large scale computing effort.

RESOURCES NEEDED
Assuming a fictional 1GHz pentium III machine, we

can look at the resources needed at an event level. There
is a range of the computing time to produce an event in
production depending on the type of decay mode to be
simulated. The range is 3 to 10 sec to fully simulate and
reconstruct each event, and the amount of data produced
in SP5 was 30 to 45kB per event. When averaging over
decay modes the time per event is 8 seconds, and the data
produced per event is 40kB.

Looking at the resources needed to produce requested
events, it is important to remember that the requests are
the starting point and not the full story. We designed the
system to at least get 80% of the given cpu, which will
increase the amount of resource needed. Also final users
might require more than what was first requested, and
large amounts of production will have to be re-done for
various reasons. These reasons will increase the amount
of needed resources beyond what was first requested to
really get the problem solved in time for users.

The resources needed to complete the requests can be
determined by using the above figures as follows. In SP5
the request was for 1.6 billion events. Multiplying this by
the averages, you then get 420 years on the fictional
machine, and 61.5 TB of data produced. Since large
blocks of the production needed to be re-created and
people requested more as the production continued, the
actual number of events was 2.2 billion. Putting in the
80% of cpu use with this greater number of events the

computing time comes to 700 years and the data
produced is 84.5 TB. This sets the scale of the computing
effort for the SP5 production cycle.

The production of these events is divided up into
computing jobs, where each job will produce 1000 or
2000 events. On the fictional 1GHz pentium III machine
the jobs would take 2.3 or 4.5 hours to complete, on
average. The final 2.2 billion events was created with
over 1.1 million computing jobs.

The code to run these jobs was developed in BaBar to
run on Solaris and Linux systems. In the SP4 production
cycle, still some amount of simulation was produce using
Solaris. But by 2002, when SP5 would be starting, all
new cpu purchased were commodity Intel machines
running Linux, and all of the production in SP5 would be
on Linux machines, this continues to be true in SP6.

In summary the SP5 computing effort was the
management of 1.1 million jobs on Linux machines, each
taking 4.5 hours on average to run.

AN OVERVIEW OF PRODUCTION
Figure 1 shows a plot covering most of the time period

of the SP5 production that started in Jan. 2003, including
some of the time period before and after to show the end
of the previous SP4 production, and the start of the SP6
production. This plot displays the production in terms of
millions of events per week for each week in this time
period.

This plot illustrates a year and a half of the history of
BaBar simulation production, and how simulation cycle
overlap in time from SP4 to SP5 and SP6. Further
comments on the styles of each production is needed,

since each cycle of production was not just a new release
of BaBar software used to simulate events, but was
actually a complete re-working of how production was to
be done, a revolution in production style for each cycle.

In SP4 production was split into three jobs -- a
simulation stage with generation and Geant 4 simulation;
a mixing stage to produce detector signals including
measured background events; and a reconstruction stage
to produce events to be used in analysis. The use of three
stages of production, each having a separate job, was a
harder management problem to solve, since the 1.2 billion
events were produced in 1.8 million jobs. Also these jobs
would be shorter, so keeping the queue full efficiently
was a hard problem, and there were three times more
failures to track, where each failure would effect the
management of the next job (i.e. simulation failures
effected submission of mixing jobs).

In SP5 the three stage production was replaced with a
new simulation executable, which would perform all
three stages (simulation, mixing, and reconstruction) on
each event, before producing output. This had a huge
effect on the management and production of simulation.
There were now one third as many jobs to manage. There
was less server load since there was no output from each
stage (for technical reasons it was 8 time less server load).
Each job was now longer, so the batch queues could be
used more efficiently. This would result in a greater
efficiency in production in SP5 in comparison to SP4,
since less work was involved to produce the same amount
of data. There was a trade off, since the new executable
would now require 512 MB of memory to run (previously
it was only 256MB of memory needed), and there would

Figure 1 : Simulation production in the BaBar experiment by week, for the time period covering the SP5 cycle of
production. The figure displays the different cycles of production in BaBar, and how they overlap in time. The details
of the simulation cycles is described in the text.

be some computing overhead so each event would take
10% longer to produce. At the time memory was
becoming cheaper, and most of the batch farms already
had at least this amount, so it turned out to not be a
serious restriction to production.

The production cycle SP6 was another revolution in
method since it included BaBar's computing model 2
changes. This new computing model included a number
of base changes in BaBar computing, but the one to most
effect production was the change from an event store
based on Objectivity databases, to an event store based on
Root I/O. This change meant control code would now
have to manage the production and distribution of root
files. Although this increased the complexity of the
control scripts compared to Objectivity use (where the
Objy. code would control the files produced), the added
control over production freed up how production could be
done, and again increased efficiency. Production was
now done into a file structure, and removed the overhead
of maintaining a database. This drastically reduced server
load again, and reduced the chance for job failure,
making production much easier for production managers.
The trade off was increasing the complexity of the
control code, but this was something under our control,
done once, and perfected in testing, so it was not a
concern for production itself.

METHOD OF PRODUCTION
Since the SP5 data would be needed by the beginning

of 2004, and since we could not wait for one machine to
do the production in 700 years, we would need to run the
jobs in parallel on thousands of cpus. At the end of 2002
SLAC had over thousand cpus but these were needed for
other efforts, such as data reconstruction and analysis.
Before this point there was a stated desire that the
computing efforts within BaBar need to become
distributed to more of the institutions in the BaBar
collaboration. Simulation production was sited as a good
candidate for distribution. Lack of required resource at
SLAC would not be a problem, since the needed
computing resources would be found at any BaBar
institution that could provide them.

But when increasing the number of sites, one must be
careful not to also multiply the effort to the collaboration.
In the early days, production at SLAC was done with 3
people working in shifts. The collaboration could not
withstand 3 people per production site. The standard
which was agreed upon was that each site could only
require one half time person in the collaboration to get the
work done.

To get this large amount of production done, without
increasing the total effort, good tools needed to be
created. A set of tools providing a number of services
was created called “ProdTools”. These were command
line tools and libraries to help the production managers

get things done. Also they would provide control for the
jobs, so they could get done efficiently with the provided
resources for each site. In the case of SP5, they provide
also for some specific requirements to be able to use the
Objectivity database in a production environment (such as
only one job could start in the database per minute).

ProdTools provided an interface between the central
production database at SLAC, and the local batch systems
at each site (see Ref [1]). The system was developed
around one single database at SLAC, which would
provide the global coordination for simulation requests,
runs, and jobs. All sites would attach to this database to
determine configuration information for the jobs to
submit. More information about this system can be found
form earlier CHEP conferences, since the current tools
are only an evolution of what was described before.

But the main point of the tools was not the submitting
of jobs, but being able to recognise when the jobs fail,
and how to fix these failures. In job production most of
the effort was not in the setup and submission of jobs, but
in recognizing failures, and getting them fixed. This
requires recognizing different failure modes, and
determining what is the proper response for each. As
these modes were recognized, the recovery of each failure
could then be coded, and improvements on the recovery
procedures were possible.

In any production failures always happen, no matter
how stable the computing systems can be made. In SP5
the best we were able to do was a failure rate of 4-6%.
The standard of development was that the tools should be
developed until they are able to respond correctly for all
but 1 in 10,000 jobs, including failures. Also a failure of
a single job can not hang all production. In SP5 there
was over 1 million jobs, about 50,000 of these will fail.
The tools should be able to then fix all but 100 of the total
jobs, so the effort does not increase with failures. In SP5
to further reduce effort, once this level of production was
reached, we would then just abandon the last unknown
jobs and accept that they would not get done.

The goal of the tools is to get as much done with as
little human effort. To do this the tools include as much
as possible automation and error checking.

Along with ProdTools to manage the jobs, there was a
tool developed to manage the transfer of the produced
Objectivity databases, which was called “MocaEspresso”.
This tool would recognise the closed Objectivity
databases produced in SP5 and package them for transfer
to SLAC. All data produced in BaBar has to be
transferred back to SLAC for archiving before it can then
be distributed to other sites for analysis. The total data
produced in SP5 was 80 TB over the course of a year, and
this meant an average of 200 GB a day would be coming
into SLAC, and there was a maximum in production of
500 GB per day over the course of the year. This
required the use of a set of file servers dedicated for
transfers, and local tools were developed to handle the

file archiving and attaching them to the production
databases. These tools also had to be careful and error
correcting to keep up with the required transfer rates -- if
they could not handle the 200 GB on one day, they would
need to be able to handle 400GB the next day.

REMOTE SITE RESOURCES
Most of the management and control of the jobs was

handled by one system at SLAC, but the production
would get done at remote sites, and there were certain
required resources needed to be able to run BaBar jobs.
For SP5 there was the Objectivity database to setup and
hold the produced events until databases could be closed
for export. This database set-up also needed to include
the BaBar conditions database, and the background
events to be used for the mixing stage. This produced the
requirement of a file server with about 500GB of space.

To run the jobs each site would need as many cpu as
they could get, with a limit of about 120 possible jobs per
file server. Each of these cpu would be put into a batch
system for job submission, and they each needed to be
able to read and write to the file server over the network,
requiring a network switch that could handle the load.
There also had to be one control machine per site, and
this would be the machine which would talk to SLAC and
to global database. Any of these machines could be
shared with other services, but these types of machines at
least had to exist.

The sites set-up were very diverse within these
requirements. Many of the academic sites had obtained
funding to be a dedicated production site, and they were
set-up with a fairly basic 32 dual processor machines and
a file server with attached disk array. But the other larger
sites would often already be set-up in some manner which
we could not change. Batch queues would have to share
resources, with varying numbers of cpu used for
production. File servers would be shared with other
efforts, making server load an important concern.
Simulation jobs could be background processes on other
production efforts. Also the batch machines could have
variable amount of memory and local disk, including one
site with batch nodes that had no local disk at all.

With the variability of resources, there was also a
variable infrastructure, with sites using either nfs or ams
to serve the Objy. databases, nfs service could be Linux
or Solaris, which have slightly different response to load,
afs could be used at a site or not. But the largest
difference was in use of batch systems. We could not
specify the batch systems in use at any sites, and many
were put into use, with LSF, BQS, PBS, SGE, Condor,
Codine, and others. To support these different batch
systems a module abstraction layer to batch interaction
was created, and a template on which functions needed to
exist was created. Central development could not test
each of the batch systems in use, but remote sites could

build an interface from the template, and check in new
batch system support to the code base. As other sites
would modify and improve each interface, this proved to
be a good development model, and produced stable
interfaces rather quickly, without a need for central
development to have detailed knowledge and test systems
for each batch system in use.

Tools would freely get modified to satisfy different
production site requirements. If a site had resources
which could be used, we would find a way to use those
resources. This resulted in 22 production sites in 6
countries on 2 continents: CalTech, CO State Univ., CO
Univ. at Boulder, Iowa State Univ, Ohio State Univ,
SLAC, SUNY Albany, Univ. Texas at Dallas, Univ.
Tenn., Univ. Victoria, and Vanderbilt in North America;
Birmingham, Bristol, IN2P3, FZK, INFN, Liverpool,
Queen Mary, RAL, Royal Holloway, ScotGrid, and Tech.
Univ. of Dresden in Europe.

The push to get work distributed among sites in SP5
was very successful, with no one site dominating
production. The relative amount of data produced in SP5
by country is shown in Fig 2.

BABAR COMPUTING MODEL 2
There was an epilogue to the SP5 story earlier this year.

With the change to the event store format in BaBar's
computing model 2 plans, there was a need to convert the
data produced in SP5 from the Objy. database to root
files. Only the minimum requested 1.6 billion events in
SP5 would get converted in this effort, to reduce amount

Figure 2 : How the production was distributed around the
world for production cycle SP5, divided by country. The
USA has more production sites within BaBar than any
other country, jobs are well distributed among the
existing sites.

of computing resources needed, and get data out to users
in time for summer conferences. The conversion was
going to take about 1 sec. per event, and there would be a
different job for each output from the original production
jobs. The production jobs were for 2000 events each, so
the conversion jobs would be only 40 minutes long each.
The conversion effort was 600,000 jobs.

This was a one-time effort within BaBar, not a
continuing production effort, so it was treated differently.
There was a farm of about 1400 cpus set-up at SLAC to
do most of this conversion, along with some conversion
to get done at IN2P3.

The project took 6 weeks, and most of the conversion
was done by one person. There was quite a bit of careful
setup to finally get efficient production, requiring servers
for the Objectivity databases, three servers for the
condition databases, and three servers for the output root
files. The resources were balanced with other conversion
efforts, at one point it was possible to keep 1200
concurrent jobs running. Since each job would take only
40 min. on average, this meant a new job would have to
be submitted every 1.5 sec., which was a tricky problem
in itself to solve adequately. The conversion was done on
time for users, averaging about 40 million events per day.

The Computing Model 2 changes were put into
production with SP6, as was commented on earlier. This
increased the amount of control that production could
have over what was produced, and with this control we
were able to achieve a much lower failure rate for jobs.
In SP5 the failure rate for jobs was stable between 4-6%,
and we could never really do better than that. Most of
this failure rate was because of the use of Objy. databases
for production, producing some strange restrictions on
production (such as only one job starting per minute into
a database, carefully tuned container sizes, Objy. data
caches to be tweaked, etc.). But with more control over
the output files, we were able to get the SP6 failure rate
down to 0.2-0.5%, where most of this failure is now due
to hardware. With this lower failure rate and the removal
of an Objy. database to support, the effort for production
managers was also reduced. The average of one half time
person per site, has now been reduced to only one tenth a
person per site. Many site managers have reported that
things are now stable enough to let run for a week,
without any interaction beyond just checking on the status
of jobs.

COMMENTS ON GRID USE
This has been a presentation of a large scale distributed

computing effort, and it sounds like it should be a GRID
talk, but it is not. There has been some activity within the
BaBar simulation production involving GridPP resources
in the UK, and INFN-Grid resources in Italy [4]. Both
approaches are converging to a unique model based on
the LCG middleware. These are development projects

and at this point only provide for a small amount of the
current production.

The production effort within BaBar started well before
there were any Grid projects, but as the Grid project
continue to mature people in production have watch them
to see what we could use. Up to recently the Grid was
not stable enough for our production to be able use it,
since we need to get production out stably, day after day.
Also until recently the Grid was not installed on enough
resources throughout the world to be able to provide the
needed production for BaBar. The resources now
installed on the Grid are now more than adequate,
although shared with several other large scale efforts.
But even so the Grid requires more effort at this time than
the use of the current tools, and current dedicated cpus
already in use.

Grid production has been proven to work for BaBar,
but only with heroic efforts. Until the Grid proves to be
more stable in development than it currently is, and will
be easier to use, these will have to be development
projects. For now the Grid is not the answer for BaBar
simulation production. But this will change, with future
development within BaBar to better match Grid models,
and within the Grid to have more stable tools which will
be easier for large projects to use. The next couple years
with production and Grid use should prove to be
interesting. In Ref. [4] a Grid of LCG farms is now
properly configured and ably to produce events. This
Grid will be used soon and will be treated by the current
system as another production farm.

CONCLUSIONS
Production of simulated events for BaBar is a large

computing effort requiring over 1000 cpus throughout the
world (we are now at 1800 cpus and growing). Even
though this is a large and difficult computing effort, it
was done and on time for physics analysis, using a
reasonable number of people.

To reduce the effort to a reasonable level, good tools
are required, and need to be robust to handle failures
without causing more work for producers, and be stable
for at least three days. In any production most of the
effort is spent in recovering from problems, tools need to
be designed with automatic recovery if effort is truly to
be reduced.

The system in BaBar is working well, producing
needed events in a timely manner with a supportable
effort in the collaboration. Improvements continue be
made, as sites add cpu and more sites come on-line. The
system continues to scale well for increasing production,
and we look forward to SP7 starting in the fall.

REFERENCES
[1] D. Smith, “Global management of BaBar simulation
production.” proceedings of CHEP03, 2003.

[2] C. Bozzi, et al. “Production of simulated events for
the BaBar experiment by using LCG.” proceedings of
CHEP04, 2004

[1] P. Elmer, “BaBar computing – From collisions to
physics results.” proceedings for CHEP04, 2004.

[2] M. Steinke, P. Elmer, et al., “How to build an event
store – The new Kanga Event Store for BaBar.”
proceedings of CHEP04, 2004.

