Domain Specific Visual Query Language for HEP analysis

or

How far can we go with user friendliness?

Vasco Amaral*, Sven Helmer, Guido Moerkotte
Universitdt Mannheim, Germany

Abstract

There is a permanent quest for user friendliness in HEP
Analysis. This growing need is directly proportional to
the growing complexity of the Analysis frameworks’ in-
terfaces.

In fact, the user is provided with an Analysis frame-
work that makes use of a General Purpose Language to
program the query algorithms. Usually the user finds this
overwhelming, since he is presented with the complexity
of the intricacies of the systems. This way the final user
of HEP experiments becomes a forced programmer or an
application developer.

In our opinion this inflicts directly or indirectly in the
query system performances. For this reason we have de-
cided to invest in a new line of research. We aim to find
a solution that balances the complexity and variability of
the Analysis queries with the need for simpler query sys-
tems interfaces. The ultimate goal is to save time on query
algorithms production.

We present how we explored the hypothesis of generat-
ing a visual query language specific for the HEP high level
Analysis domain. The prototyped framework developed so
far, PHEASANT, is giving us arguments in the feasibility
of this approach. Therefore, like in any young Human Cen-
tric development project, this raises the need of a broad
discussion in order to validate it. We believe to be opening
an new fruitful research topic among the community and
we expect to motivate both computer science and physicist
experts into the same discussion.

MOTIVATION

Present high level Analysis frameworks provide the user
with two communication channels. In this paper the result
visualization facilities are called the query output chan-
nel (please do not confuse with the data input/output chan-
nel). To flexible querying the information systems, the
frameworks provide General Purpose Languages (GPL),
like C++, C or others (see Fig.1). We call it query in-
put channel. In our opinion, while in one side the output
channel has improved pretty much, on the other side much
is still to be done in the input channel.

In fact, these Analysis frameworks, specifically designed
for this domain, do not detach the libraries of functions

* researcher at LIP

1) Code

_—

Visualization
Package

Figure 1: Nowadays approach in HEP - textual Input chan-
nel and visual output

3 @4)Retrieve
Analysis
Framework base

4) Visualize 3) Result

from a GPL. With time, the libraries become larger and
more generic. The consequence is that the usability de-
creased because of the multiplicity of entry points, param-
eters and options offered to the end user that is now re-
quested to increase his programming skills.

While in one hand the flexibility of GPL brings great
expressive power to the Physicist experienced in program-
ming, on the other end, it fails to present a simple language
for the non-experienced user that has to code to work on his
Analysis. This situation reflects immediately in the time
spent to code, compile and debug the query application de-
veloped, plus the possible inefficiency of running the non-
optimized application in the Analysis frameworks shared
resources. As in any software application the way end users
interact with databases to access data can have demolishing
performance effects. The motivation of our work is to de-
velop and find better and new ways to optimize the process
of HEP Analysis. The way we propose to do that, is by in-
troducing a domain specific visual query language in order
to improve the input channel by improving the learning
curve without loosing flexibility and expressivity.

The following description will specify further this topic
and report our research.

LINE OF RESEARCH

Based on our experience [8, 9, 1] with a real running
experiment, Hera-B, with real Analysis data and users, we
started our research by gathering the data model and query
patterns.

As we have observed, Analysis tends to have unpre-
dictable queries, meaning that instead of a limited set of
queries we have gathered a wide variety of them. How-
ever being different, we have noticed that it was possible
to infer certain standard commonalities (meaning common
structure) and predicatable variabilities (meaning details
that make each query different from each other[7]).

Since the user is frequently presented with different
kinds of Analysis frameworks, each one with different
types of coding paradigms and data representation, we have
tackled the problem by introducing a new layer of abstrac-
tion that hides all those coding details. By different cod-
ing paradigms we mean: iterative, functional or object ori-
ented. By different data representations we mean that the
user deals with objects or with table like structures named
N-Tuples.

This new layer provides an unifying vision of the differ-
ent Analysis frameworks. It presents the user with a flex-
ible query language that, in opposition to a general pur-
pose language, deals with concepts (object concepts and
operations) of this specific domain (Domain Specific query
Language). As we have already mentioned, the traditional
procedure for querying the Analysis framework uses the
output channel as Visual (under the form of histograms),
and the input channel as textual. From the Computer Sci-
ence, we know that Visual Languages have significant ad-
vantages over the textual approaches, specially for unexpe-
rienced users. Visual systems are a way to enlarge the user-
machine channel. Therefore, our proposal was to build a
Domain Specific Visual Query Language (DSVQL)[3], see
Fig.2.

1) Design Query

2) Code

SV —_—

D
(Pheasant)
Visualization
Package

Figure 2: Our proposed approach - Visual input and output
channels

S)Retrieve ————

[~<—>| Storage

—_—

Analysis
Framework

4) Result

base

5) Visualize

The requirements for this DSVQL are to make use of
HEP Analysis concepts and give the user the control on
designing/modeling his query in a visual way. In conse-
quence, the visual system is then able to map the query
into the target Analysis framework code, which on its turn
is very particular for each experiments.

A typical DSVQL is reported to be a R&D project on it-
self, with significant implementation effort. Nevertheless,
benefits are huge since by raising the modularity and ab-
straction layers the optimization potential is increased. The
burden of efficiency is no longer in the user’s side but on
the experts’ one. There is a better control over the query
patterns, since the DSL is much more restricted then GPLs,
which means that developers can track more easily the bot-
tlenecks.

In order to validate this proposal for approaching the
query input channel and test its feasibility we have de-
signed a language, called PheasantQL[4, 10], and we have
implemented a small testing framework (named Pheasant
prototype[10]) to learn about the unclear implementations
details. We believe that this elegant approach pushes for
the user friendliness side of the Analysis frameworks and
increases the abstraction from the code world.

We will next describe our procedure to design the lan-

guage, and following that how to implement a prototype to
deal with it.

Language definition

Any query language should be specified by means of a
formal syntax and semantics. This approach is beneficial
since by doing so we are forced to develop both major con-
cepts of the language and the details, leading to a truthful
implementation. Additionally, the user has a unique and
clearly determined semantics for any sentence in the lan-
guage.

The syntax of a language is a set of rules that define the
ways symbols may be combined to create well-formed sen-
tences in that language. The semantics, on the other end
deals with the meaning of programs, which means how
they behave when executed on computers.

In [4, 10] we specify the Pheasant language. We intro-
duce the syntax with the notation and alphabet of our pro-
posed language. Following that, we specify the semantics
of the language making use of translational semantics. In
other words we define the semantics of our language by
mapping it into the very well-known (for Computer Sci-
entists working with core database technology) intermedi-
ate Object Algebra whose description can be found for in-
stance in [12].

Prototyping

Due to the space limitations we can not dive into the de-
tails, so we just give a simplified overview. For further
details we recommend [6, 11, 10].

The system was designed to cope with the several query
transformation phases required to deliver a target query
source code that should be compiled and run against a spe-
cific physics storage base.

We have devised three main modules, as seen in Fig.3:
user interface, plan generator and code generator.

The User Interface is responsible to deal with the user’s
query edition, interactively notifying the user of incorrect
syntax, see Fig.4. Internally a Concrete Components Graph
is maintained and simultaneously mapped, using the ob-
servers pattern, to a corresponding Abstract Syntax Graph.

The Plan Generator starts by interpreting the Abstract
Syntax Graph and transform it into an Abstract Syntax
Tree, (which is easier to deal with by having simpler walk-
down algorithms). It continues then by running an algo-
rithm that walks down the AST and generates the corre-
sponding algebraic plan like in Fig.5(for complete details
please consult [4, 10]).

Finally, the query Code Generator looks at the algebraic
query plan, optimizes it at the algebraic logical level and
generates the physical operators. In the sequence of that,
a new algorithm generates the required source code to be
compiled and run against the storage base. This module is
strictly bound to the specific target framework. The query
code generator is implemented as a plug-in to our Pheasant
framework specific to the Hera-B Analysis framework (in

Query

User Interface

ASG

Plan Generator

QP

Code Generator

Target Code

Figure 3: Different architectural layers

Fle Lne Image FIl Edit Generate Group Text Grid Zoom [if Help
1[0 =25 @mnel=m _ouune: |
|l lele] #] o] |

|[285.65 [Move ohject |Helvetica [1o] [Pheasant 1.0 2002

Figure 4: Pheasant prototype layout

this case BEE[13]). Other plug-ins can be added to deal
with different target physics frameworks without necessar-
ily impose changes to the rest of the query generation mod-
ules.

Usability evaluation

To support our claims that through our methods we man-
age to improve the efficiency, reduce the error rate and have
a fast learning curve, we have to exercise a complete and
non-biased evaluation of our language comparing it to a
real life programming Analysis framework. In [11, 10]
we explain how we have evaluated the usability in its three
concepts of the implemented prototype, and that should be
seen as guidelines for future framework evaluations.

We measured effectiveness to determine the accuracy

< el >

(SFENC D EE i 5
A.\.H‘:e'h’ L[trie)
eyt
LAY et} A Aieeurt) < el LA (e eul) <ents

-”m-eu-:n A.—\r: At} i) Jﬁ.\le'.e'-’h'. -[Erue)

(& eV evt
.;,.P("l A e). (| eent]) USA) (|cem))
£l A

[brme) (b

¢ G

runCol my PrivateCol

Figure 5: Example of a query plan from a simple query.
For explanation and details consult [4, 10]

and completion when performing queries. We also ob-
served efficiency, as measurement related to the level of
effectiveness in time spent to complete a query. (Efficiency
can also be measured in terms of the expense of various re-
sources, such as mental and physical effort, time, financial
cost, etc.)

We measured satisfaction in use to evaluate if the tool
was free from inconveniences and generated positive atti-
tude towards the use of it. In other words we measured how
comfortable the user felt while using the system.

Although just dealing with a prototype that was not a full
fledged implementation, since it was meant to test some im-
plementation details, the results were very promising and
gave us the confidence of being in the right track [11, 6, 10].

SUMMARY AND FUTURE WORK

We have proved the feasibility of the idea of a Domain
Specific Query Language as a way to boost the user friend-
liness in HEP Analysis. As in any Human-Computer in-
teraction system, the next steps will naturally involve a
broader discussion in the research community in order to
achieve the necessary improvements and extensions during
the next product’s life-cycles.

The query language itself should be subject to a broader
discussion in order to evolve to the necessary expressive
power.

Developers (Computer scientists, Software engineers,
others) can now concentrate on the several architectural
levels abstracting the physics, while the end users have a
now a tool that prevents them from having to code for the
most patternized queries as possible.

Some extra directions could be taken, for instance the in-

tegration in projects linked to the applicational level of the
GRID should be studied and its impact in the productivity
should be evaluated. A further point we want to work on
(and which involves all abstraction levels) is to deal with
“environmental” data, (meta-data), such like the introduc-
tion of query versioning and storing. This means, that users
can save, load, and modify different versions of the same
query. In this context we also think of storing answer sets
temporarily for further querying.

We believe to be touching a very exciting topic of re-
search and we challenge others to follow us and collaborate
with us in this effort to increase the final users’ productiv-

ity.

ACKNOWLEDGMENTS

This work was partly funded by the Portuguese Govern-
mental Foundation of Science and Technology FCT in form
of a Phd. scholarship ref. SFRH / BD / 8918 / 2002 to
Vasco Amaral. We acknowledge also LIP (Laboratdrio de
Instrumentagdo e Fisica Experimental de Particulas) for its
support.

REFERENCES

[1] V. Amaral, A. Amorim, and et.al. Operational experience
running the Hera-b database system. In H. Chen, editor,
Proceedings of CHEP 2001, International Conference on
Computing in High Energy and Nuclear Physics, Beijing, P.
R. China, pages 396-397. Science Press, September 2001.

[2] V. Amaral, S. Helmer, and G. Moerkotte. Designing and
implementing a new abstraction layer to optimize the HEP
analysis process. [EEE Conf. Record of Nuclear Science
Symposium NSS, Portland, OR, USA, pages N26-104, Oc-
tober 2003.

[3] V. Amaral, S. Helmer, and G. Moerkotte. A Domain Spe-
cific Visual Query Language for the High Energy Physics
environment. In J.-P. Tolvanen, J. Gray, and M. Rossi,
editors, 3rd Workshop on DomainSpecific Modeling, An
OOPSLA 2003 Workshop, Anaheim, CA, USA, pages 9—
16. Jyviskyld University Printing House, Finland, October
2003.

[4] V. Amaral, S. Helmer, and G. Moerkotte. PHEASANT: A
PHysicist’s EASy ANalysis Tool. Technical Report of the
University of Mannheim: 8/03, 2003.

[5] V. Amaral, S. Helmer, and G. Moerkotte. A visual query
language for HEP analysis. IEEE Conf. Record of Nuclear
Science Symposium NSS, Portland, OR, USA, pages N26—
105, October 2003.

[6] V. Amaral, S. Helmer, and G. Moerkotte. PHEASANT:
A PHysicist’s EASy ANalysis Tool. In J. Carbonell and
J. Siekmann, editors, LNAI Lecture Notes in Artificial In-
teligence, pages 3055:229-242. Springer Verlag, June 2004.

[7] V. Amaral, G. Moerkotte, A. Amorim, and S. Helmer. Stud-
ies for optimization of data analysis queries for hep using
Hera-b commissioning data. In H. Chen, editor, Proceed-
ings of CHEP 2001, International Conference on Comput-
ing in High Energy and Nuclear Physics, Beijing, P. R.
China, pages 154-155. Science Press, September 2001.

[8] A. Amorim, V. Amaral, and et. al. The Hera-b database
management for detector configuration, calibration, align-
ment, slow control and data classification. In I. P.
Mirco Mazzucato, editor, Proceeding of CHEP 2000, in-
ternational conference on Computing in High Energy and
Nuclear Physics, 7-11 February, Padova-Italy, pages 469—
472. Imprimenda, Padova, Italy, February 2000.

[9] A. Amorim, V. Amaral, and et. al. The Hera-b database ser-
vices for detector configuration, calibration, alignment, slow
control and data classification. Elsevier Science, Computer
Physics Communications, 140(15):172-178, October 2001.

[10] V. Amaral Optimization of data analysis queries for mas-
sive data-volume HEP Information Systems. Phd. thesis,
University of Mannheim, to be published by end of 2004.

[11] V. Amaral, S. Helmer, and G. Moerkotte. Engineering a
New Abstraction Layer to Optimize the HEP Analysis Pro-
cess. IEEE Transaction in Nuclear Sciences Journal (TNS),
ISSN: 0018-9499, CODEN:IETNAE, volume 51, number 4,
August 2004, pp.1441-1448

[12] L. Fegaras and D. Maier. Optimizing object queries using an
effective calculus. ACM Transactions on Database systems,
25(4):457-516, December 2000.

[13] T. Glebe, Clue - The BEE event model library. HERA-B
Note 01-138, Software 01-019, DESY, 2001

[14] V. Amaral Project Pheasant website: http:
//pi3. informatik. uni-mannheim. de/ \ “amaral/
pheasant . http: // cern. ch/vasco. amaral/
pheasant.

