Therole of legacy serviceswithin ATLASDC2

Dr. J. A. Kennedy, LMU, Munich, Germany

Abstract

This paper presents an overview of the legacy interface

provided for the ATLAS DC2 production system. The term
legacy refers to an interface to a batch system, such as PBS,
for the ATLAS production system.
In a world which is becoming increasingly grid orientated
this project allows us to evaluate the role of non-grid solu-
tions in dedicated production environments. Experiences,
both good and bad, gained during DC2 are presented and
the future of such systems is discussed.

INTRODUCTION

The ATLAS Experiment

The ATLAS experiment at CERN will begin data taking
in 2007 when the LHC is commissioned. From then on data
is expected to be recorded at a rate of 2 PetaBytes per year
with an additional 1 PetaByte of simulated data produced
per year.

This huge data volume means that it is impossible to per-
form all the processing and analysis at CERN. ATLAS aims
to utilise distributed computing resources in collaborating
countries from all around the world.

To aid with the development of this distributed comput-
ing infrastructure a series of data challenges were started in
2002. The data challenges allow us to evaluate the ATLAS
computing model, the full software suite, the data model
and also to ensure the correctness of technical choices
made for ATLAS computing.

Overview of Data Challenge 2

The second data challenge, DC2, began in summer 2004.
DC2 focuses on the use of an automated production system
and GRID software. The goals of DC2 can be summarised
as follows,

e Produce 107 Events
e Use Geant4, POOL, GRID

e Pileup/Digitization in ATHENA(The ATLAS soft-
ware framework)

e Complete Event Data Model and Detector Description
e Full ATLAS Simulation + Combined TestBeam
e Use/Test GRID middleware

e Large Scale Physics Analysis

e Computing Model Studies

The task of producing simulated data for DC2 was split
into several subtasks such as event generation, simulation
and reconstruction.

Different paths can be taken through the production de-
pending on which final simulated data is required. This
modularity is very useful and powerful within a production
system.

The data challenge was split into three distinct phases

e Part 1: Production of Simulated Data

— Geant4, digitization, pileup, POOL

— minimal reconstruction to validate
e Part 2: Test of Tier-0

— Full reconstruction

— ESD+AQD distributed in real time to Tier-1s for
analysis

e Part 3: Distributed Analysis

— Access to event and non-event data from any fa-
cility, organised and chaotic approaches

This splitting of the data challenge allows a natural task
flow through data production to the distributed analysis
challenge.

ATLASPRODUCTION SYSTEM

The production system for DC2 is designed to provide
a common framework in which any grid flavour or legacy
system may be integrated[1, 2, 3]. The production system
is formed from several individual elements which when
plugged together provide the required functionality for the
submission, tracking, recovery and validation of jobs. The
individual elements of the production system may be sum-
marised as follows.

e Common database for production jobs
e Common Supervisor run by all facilities/managers
o Executors developed by middleware experts

e Data Management system to allow intergrid data
transfer and file cataloging



ATLAS Production system

Windmill
e S
super )

i 71 }M"l' ,/;f i s |
Leg N (Lo N Legacy
\ . \ - = ) J
B ﬁ ‘ ;
Wil
™ 7@} :uj B\ zu
< ng J e V ”BS/J(F/

Figure 1: Overview of the ATLAS production system.

Figure 1 shows an overview of the ATLAS production
system. The core of the ATLAS production system is
formed from the coupling of a supervisor with an executor.
The supervisor provides an interface to the job definition
data and metadata associated with the jobs while the execu-
tor provides an interface to the computing resources. The
communication between the two elements is performed us-
ing either Jabber or SOAP, this allows some flexibility in
the design and implementation of the system. The use of
XML messaging to communicate between the supervisor
and executor provides a means of allowing the individual
elements of the production system to be designed without
being strictly tied to one technology. The supervisor in-
terfaces to a central production database and retrieves job
specific information. The supervisor-executor system then
allows these jobs to be passed to one of the grid flavours
or standard batch system. Through it’s interface to the ex-
ecutor the supervisor may continuously monitor the state of
the submitted jobs and finally retrieve detailed information
about the job once the job has finished.

Although the system currently uses a one-to-one
supervisor-executor mapping, one-to-many and many-to-
one mappings may also be deployed.

THE LEGACY EXECUTOR

Despite DC2’s commitment to deploying grid solutions
whenever possible, several considerations lead to the de-
velopment of a Legacy executor. The Legacy executor may
be used as a backup solution should unforeseen problems
arise with the development of grid executors, provide test-
ing facility for use when developing the production system
and to provide access to computing resources at sites which
have not yet deployed any grid middleware.

Overall aims

The Legacy executor is designed primarily to be simplis-
tic and provide an adaptable system which may be ported to

any batch flavour. In spite of this aim for simplicity it is in-
evitable that different environments and different batch sys-
tems deployed at sites will require some re-configuration
of the executor. The development aims to keep this re-
configuring to a minimum. The Legacy executor aims to fit
seamlessly into the production system providing the stan-
dard interface to the supervisor and to all intents and pur-
poses be indistinguishable from a grid implemented execu-
tor.

Jabber/SOAP

numJobsWanted
executeJobs
getExecutorData
getStatus

fixJob

kill Job

Supervisor Executor

XML messaging A

\ 4

lcpu resource =
=

111}
AL

Several messages are exchanged between
the Supervisor and the Executor.

Some are one-way while others are two-way.
Throughout the system is non-blocking.

I [

\HH

Figure 2: The Supervisor-Executor system, showing their
communication via XML messages and the executors cou-
pling to a set of CPU resources(a batch system in the case
of the Legacy executor).

I mplementation

The Legacy executor was developed using python thus
allowing for rapid development and testing. The supervi-
sor project development was also undertaken using python
and provides a simple executor template which was utilized
during the development of the Legacy executor. In addi-
tion several supervisor tools for the interpretation, process-
ing and creation of XML messages were also used by the
Legacy executor. The executor allows some site specific
configurations values to be set such as the batch queues to
interface to and the maximum number of executor jobs to
allow into these queues.

The Legacy executor implements the standard six meth-
ods required for communication with the supervisor.

e numJobsWanted

e executeJobs

getExecutorData

getStatus
killJob
e fixJob

Figure 2 shows a schematic of the coupling of a super-
visor to an executor and their communication. The XML
messaging enables the communication between the super-
visor and executor to be performed in a non blocking man-
ner.



The standard cycle of job reservation-submission-
monitoring-validation is performed using 4 of these meth-
ods, numJobsWanted, executelobs, getExectorData and
getStatus. Each of these four messages is continuously
polled from a supervisor to an executor with all the jobs
associated with this state.

Figure 3 shows a schematic of the flow through each
of the 6 methods within the Legacy executor. Several of
the methods share common requirements and thus common
core elements were developed within the Legacy executor,
helping reduce redundancy and also aiding with portability
to other batch systems.

numJobs\Wanted In numJobsWanted the supervisor asks
how many jobs of a particular specification the executor
requires. The job specification can provide information
about requirements such as CPU time, required memory
etc. The executor queries the batch system and the config-
uration data and returns the number of jobs required.

executeJobs Once jobs have been requested the super-
visor sends executeJobs and the executor then takes the
data associated with each job creates a jobInfoObject and
archives it. A wrapper script is then created for the job and
this is then submitted to the batch system with the local
jobld being recorded for later reference. The local jobld is
then mapped to the global jobld provided by the supervisor.

getExecutorData Once jobs have been submitted, via
executeJobs, the supervisor asks getExecutorData, the ex-
ecutor queries the status of the specified jobs and returns
this job status to the supervisor.

getStatus Once Jobs have started to run the supervisor
will ask getStatus and the executor will again query the
batch system for the job status. However with getStatus
an extended level of information is returned to the supervi-
sor, information such as the names,sizes,md5sums of out-
put files as well as diagnostic information about the job exit
code,job time, compute node etc, is returned to the super-
visor. The availability of the information is dependent on
the status of the job itself, if the job is running this is re-
ported and null information is reported for fields which are
unavailable otherwise more detailed information is found
and returned to the supervisor.

The killjob and fixJob methods are not currently used
within the standard job cycle. However a minimum im-
plementation of these has been provided within the legacy
executor.

KillJob The killJob call is simple in its implementation
with a map from the global jobld to the local jobld required
and then an interface to the batch system to kill this job is
made.

FixJob The fixJobs method was originally envisaged to
allow several different functionalities, job cleaning, job re-
submission etc. The legacy executor has implemented only
a simple job re-submission method. The global jobld is
used to retrieve the archived jobInfoObject and this is then
used to re-submit the job via the executeJob method, the
number of attempts associated with the job is incremented.
Job re-submission is only allowed by the executor if the

number of submission attempts is below a used defined
maximum.

In addition to ensuring that the Legacy executor provided
the functionality to interface with the supervisor and run
jobs on a local batch system it was considered a design goal
to ensure that it also provide a adequate level of persistency
and fault tolerance.

The executor is made persistent by storing the global to
local job mapping and allowing queries access to this store,
thus when the executor fails a persistent store of job infor-
mation remains intact and upon re-launching the executor
the correct information about the assigned jobs can be ob-
tained. This persistency is very important in a distributed
system to ensure that failures in the system don’t cause the
loss of jobs at remote sites.

Deployment and testing

The Legacy executor was primarily developed with a
PBS batch system at the FZK center in Germany. At var-
ious points during the development process the executor
was deployed at alternate sites and adapted to their sys-
tems. Sites used include RAL(PBS) and CERN(LSF).
Once a working framework for the legacy executor was
available a parallel development was undertaken using the
CCIN2P3(BQS) system. The deployment at different sites
allowed the executor to remain focused on it’s goal of pro-
viding a generic system with minimum required alterations
for different sites.

The PBS based executor for the FZK site was tested ex-
tensively with both event generation and simulation jobs.
In the final testing phase the executor was run with a con-
tinuous float of 200 jobs, with 400 jobs having a typical
duration of around 24hrs, being processed during this test.
Although this number is somewhat smaller than the num-
bers available when using grid based executors it is never-
theless convincing for a single batch system and it is envis-
aged that the executor would be capable of scaling to even
large batch system capacities.

The persistency and resistance to executor/supervisor
failure was tested by killing either the executor or supervi-
sor once jobs had been submitted to the batch system. The
majority of jobs could be successfully retrieved although
in some cases the jobs were lost. More investigation is re-
quired into the mechanism by which jobs are lost and to
ensure that this possible cause of failure is corrected.

EXPERIENCE

Several positives came from the development of the
Legacy executor as well as a some indications about the
limitations of such systems in production environments.
One positive is the ability to aid with the testing and feed-
back cycle. The development of a simple Legacy interface
allows for fast feedback to the developers of the production
system. This is somewhat limited however since the legacy
executor cannot identify all possible problem areas since
several grid specific areas are not covered. The interaction



Legacy Executor Flow Diagram

Interpret XML message

executgfobs getExeNutorData
numJobg¥fanted getSwgus
i kil

Interface to
batch system

Get local
job-id(s)
from map of
job id(s)

Archive info

Determine related to job(s)

occupancy

Get local Get local

Get local

job-id(s) job-id(s) job-id(s)
from map of from map of from map of
job id(s) job id(s) job id(s)

R !

I I

Retrieve
Archived info
related to job(s)

Return required
number of jobs
to supervisor

Create Job
wrapper scripts

Interface to
batch system

Interface to
batch system

Interface to
batch system
Determine status

of job(s)

Determine status

of job(s) Kill job(s)

' I

Submit jobs to
batch system

Resubmit job(s)
via
executeJobs Record local

job-ids

'

Map local
job-id(s)
to Global
job-id(s)

Lo

Determine more
detailed info
about job(s)

Return job status
information to
supervisor

Return job status
information to
supervisor

Return detailed
job information
to supervisor

Figure 3: Flow Diagram for the Legacy Executor. The XML message interpretation is performed using tools from the
supervisor, once this is performed the task associated with the message is executed.

of the supervisor and executor as well as the functionality
of the supervisor are areas which legacy systems can help
test. On the side of limitations probably the most striking
is the lack of tools for file cataloguing and replica manage-
ment. As the project progressed these grid tools were used
more and more and data management tools were directly
used within the supervisor. This functionality is lacking
within the Legacy executor and was a problem area.

CONCLUSIONS

The development of the Legacy executor has shown that
simple interfaces to batch systems are still viable for large
scale production systems but their usage comes at a cost.
The lack of file replication and management tools means
that they lack some functionality which many view as es-
sential for a production system. This leads us to a choice,
we can have a simple batch interface and sacrifice some
functionality or we can start to add this functionality and
design something which isn’t so simple anymore. Doing
away with simplicity may lead to a system which suffers
much the same problems as the grids themselves and moves

away from being a “backup” solution. One area in which
a legacy interface may prove to be very valuable is the ini-
tial production and testing phase. A simple solution can
be produced relatively quickly and can greatly benefit the
early development of a project.

ACKNOWLEDGEMENTS

I would like to thank the members of the ATLAS pro-
duction team, in particular Kaushik De and Luc Goossens,
for their help and comments during the production of the
legacy executor. | also would like to acknowledge the work
of Karim Bernardet who undertook the parallel develop-
ment of the BQS based executor.

REFERENCES
[1] L. Goossens, ATLAS Production System in ATLAS Data
Challenge 2, Luc Goossens, These Proceedings
[2] http://heppcl2.uta.edu/windmill/

[3] M. Branco, Don Quijote - Data Management for the ATLAS
Production System, These Proceedings



