
 A Legacy Executor For ATLAS Data Challenge 2
John Alan Kennedy Ludwig-Maximilians-Universität München, Germany

1. ATLAS Data Challenges
The ATLAS experiment at CERN will begin data taking in
2007 when the LHC is commissioned. From then on data is
expected to be recorded at a rate of 2 PetaBytes per year
with an additional 1 PetaByte of simulated data produced
per year.

This huge data volume means that it is impossible to perform
all the processing and analysis at CERN. ATLAS aims to
utilise distributed computing resources in collaborating
countries from all around the world.

To aid with the development of this distributed computing
infrastructure a series of data challenges were started in
2002. The data challenges allow us to evaluate the ATLAS
computing model, the full software suite, the data model and
also to ensure the correctness of technical choices made for
ATLAS computing.

2. Data Challenge 2
 The second data challenge, DC2, began in summer 2004.

DC2 focuses on the use of an automated production system
and GRID software.
The task of producing simulated data for DC2 was split into
several subtasks such as event generation, simulation and
reconstruction.

Different paths can be taken through the production
depending on which final simulated data is required.
This modularity is very useful and powerful within a
production system.

 4. Legacy Executor
Despite DC2's strong commitment to using GRID systems
a strong case was made for the development of an interface
to standard batch systems, this is the Legacy Executor.

The Legacy Executor provides a fallback solution if problems
 occur with GRID based executors and also allows institutes
 which are not integrated into a GRID to contribute to DC2.
The Legacy Executor may also be used to aid with testing.

Designed to be simplistic, the Legacy Executor makes use
of common tools provided within the supervisor framework.
The PBS, BQS and LSF batch systems are currently
supported.

5. The Future for Legacy
The Legacy Executor was designed with simplicity in mind.
Following this, several components of the production system
do not exist for the Legacy Executor, for instance RLS.
These may or may not be added in the future, but how
GRID-like do we want our non-GRID solution to become?

The production of a simple non-GRID executor provides
more flexibility to the production system and aids with testing.

3. The Production System
The production system is formed from several components.
 Supervisor - management of jobs between several GRIDs.
 Executor - interface to a GRID flavour or batch system.
 DMS - management of data between several GRIDs.

At the core of the production system is the supervisor -
executor system. The coupling of a supervisor and an
executor forms a bridge which joins together the computing
power of the GRIDs and the job definition data and metadata
associated with the production jobs.

The supervisor – executor communication is achieved using
an XML dialog . Messages are passed via jabber or by use of
web services.

Data Management in an inter GRID manner is a very
important part of the production system. It is imperative that
the individual GRID flavours can share files and datasets.

Supervisor Executor

XML messaging

Jabber/SOAP

numJobsWanted
executeJobs
getExecutorData
getStatus
fixJob
kill Job

Several messages are exchanged between
the Supervisor and the Executor.
Some are one-way while others are two-way.
Throughout the system is non-blocking.

CPU resource

Interpret XML message

numJobsWanted

Interface to
batch system

Determine
occupancy

Return required
number of jobs
to supervisor

executeJobs

fixJob killJob

Archive info
related to job(s)

Create Job
wrapper scripts

Submit jobs to
batch system

Record local
job-ids

Map local
 job-id(s)
to Global
 job-id(s)

Get local
job-id(s)

from map of
job id(s)

Interface to
batch system

Determine status
of job(s)

Return job status
information to

supervisor

getExecutorData
getStatus

Get local
job-id(s)

from map of
job id(s)

Interface to
batch system

Determine status
of job(s)

Test if the job(s)
is finished

Yes

Return job status
information to

supervisor

Determine more
detailed info
 about job(s)

Return detailed
job information
 to supervisor

No

Get local
job-id(s)

from map of
job id(s)

Interface to
batch system

Kill job(s)

Get local
job-id(s)

from map of
job id(s)

Retrieve
Archived info

related to job(s)

Resubmit job(s)
via

executeJobs

Legacy Executor Flow Diagram

