
CMS DETECTOR DESCRIPTION: NEW DEVELOPMENTS

A. Aerts, Eindhoven University of Technology, Eindhoven, The Netherlands
M. Case, Univ. of California Davis & European Laboratory for Particle Physics (CERN)

M. Liendl, European Laboratory for Particle Physics (CERN)
Asif Jan Muhamad, CERN

Abstract
The Compact Muon Solenoid (CMS) Detector

Description Database (DDD) consists of a C++
Application Program Interface (API) and an Extensible
Markup Language (XML) based detector description
language. DDD is used by the CMS simulation (OSCAR),
reconstruction (ORCA), and visualization (IGUANA)
software projects as well by test beam software that relies
on those systems. The DDD is a sub-system within the
COBRA framework of the CMS Core Software.
Management of the XML, the source for the DDD, is
currently done using a separate Geometry project in CVS.

We give an overview of the DDD integration and report
on recent developments concerning detector description
in CMS software. These are the algorithmic construction
of detector sub-components, the streamer which allows
users to write to local binary files, the recent relational
database extension effort and the integration of the DDD
into the COBRA framework.

INTRODUCTION
The CMS software project requires that offline

software for applications such as simulation,
reconstruction, and visualization have a coherent common
source for the geometrical properties of the detector.
These applications use the DDD sources and API as the
basis for this consistent view of the detector description
[8]. The offline applications have several common
requirements which the DDD addresses in the DDD
Domain Model. Additionally the DDD provides the
ability to include application-specific information to be
associated with detector parts.

Requirements
The requirements that continue to guide the

development of the DDD are as follows:
1. One Definition Rule

a. Each identical part in the detector
should only be defined once, but may
be positioned multiple times.

b. Each material, solid, rotation and any
other DDD object should be constrained
by this rule.

2. The DDD must provide a common API for CMS
reconstruction (ORCA), simulation (OSCAR)
and other CMS software.

3. The DDD should only define the ideal detector
and not re-alignment or other conditions.

4. The DDD must provide a generic way for client
applications to extend the DDD.

5. The DDD must provide a hierarchical querying
and filtering mechanism.

6. The DDD must provide similar ease of access
and portability of sources as was provided by
CMSIM (the Geant3 based simulation of CMS).

7. The DDD must contain all information necessary
to build up application specific internal
representations of the detector.

a. The DDD should not be used as
'internal' representation of the detector
within the applications.

A more detailed description of the requirements can be
found in [2] [3] [4] [8].

Outline and conventions
We begin this note with an overview of the DDD

Domain Model followed by a discussion of the C++ and
XML [12] model designs. We then describe new features
starting with the extension for algorithmic detector
description. We review relational database work and
describe the new effort in this area. Lastly we briefly
discuss the streamer and the consequences of integration
with the CMS COBRA [7] framework.

DDD DOMAIN MODEL

Model overview

DDD Domain ModelPlatform
Independent
Model

Platform
Specific
Models

DDD Description
Model

DDD API
Model

DDD Persistency
Model

C++
Classes

Java
Classes

SQL
Tables

OODB
Classes

Python XML

The DDD Domain Model provides a platform
independent model which can be used in the Model
Driven Architecture [13] approach to develop platform-

Figure 1: DDD Domain Model as a source from
which to derive platform specific models and
implementations. [3]

and implementation-specific models. The layout of this
process and derivations of specific models can be seen in
Figure 1.

Model Detail
The DDD contains the geometric properties of the

detector. This includes shapes, materials, positions and
application-specific parameters [Figure 2]. In the model a
LogicalPart defines a part of the detector and comprises a
Solid and a Material. The Solid describes the shape and
size of a part and the Material describes the material
properties of the part. To build the detector hierarchy,
each part is placed inside its parent part. There is a root
LogicalPart for the whole detector with appropriate
dimensions.

LogicalPart

LogicalPart

PosPart

Translation

Rotation

Translation

Rotation

Material

Solid

ExpandedPart

Specific Data

relative

re
lat

ive

parent
child

parent
firstChild
nextSibling

ab
so

lut
e

absolute

Nodes and edges in a graph

Forms a Tree

Defines and
individual part

Figure 2: Overview of the DDD Domain Model (for
details see [1])

A PosPart object positions a child LogicalPart inside a
parent LogicalPart by specifying a Rotation and
Translation with respect to the parent. Together the
LogicalParts and PosParts form a graph structure with
LogicalParts being the nodes and PosParts being the
edges of the graph. We call this graph the CompactView.

Multiple LogicalParts (children) can of course be
placed inside the same LogicalPart (parent). Such a graph
is directional (parent to child) and allows multiple edges
between two nodes. Of course there are no cycles in the
graph because a part can neither contain itself nor any of
its predecessors in the real world.

The ExpandedPart represents the actual part once it has
been positioned in the parent. It knows its absolute
position and parent. By traversing all paths through the
graph, a tree is generated such that each copy of the part
is a node on the tree. The result is what we call the
ExpandedView of the detector.

A client application can attach to ExpandedParts
application-specific data in order to build a customized
internal representation of the detector.

This model fulfils the necessary requirements and
forms the basis for the DDD.

C++ AND XML DATA MODEL
The designs of the C++ and XML Models were derived

and developed together from the DDD Domain. These
models are thus very similar and are described here
[Figure 3].

Client software accesses the DDD via an API. The API
allows access to the CompactView and ExpandedView
representations of the detector. Nodes of the
ExpandedView are built on the fly, transparently to
clients, by traversing paths in the CompactView for
reasons of memory optimization. The ExpandedView can
be further filtered to allow the user to traverse a selected
set of nodes from the tree.

Processing
 The processing works as follows: the Document

Management portion reads a configuration file or
otherwise acquires a list of XML files which constitute
the current geometry configuration of the detector. All
files are then processed in the Document Processing
section which makes DDD C++ objects using the DDD
services. This all happens via the DD Language interface
which is defined using an XML Schema. Once in the
runtime system, the information is available to the client
software and can be stored in other repositories as well.

Further details on the XML can be found in [4][2].
There is a logical if not exactly one-to-one mapping

between the XML and the C++ models.
Table 1 shows some examples of this mapping. For

example a DDMaterial is created from <Material… >
element descriptions in the XML. Similarly, a DDSolid is
made from such entries as a <Box …> or <Trapezoid…>
in the XML. A DDLogicalPart is created from the XML
element <LogicalPart … > which includes a reference to a
material <rMaterial…> and to a solid <rSolid…> or a
solid element inside the LogicalPart element and so forth.

IGUANA

OSCAR

ORCA

FAMOS

Documents

CMS Offline
Software

DDD Runtime
System

External Document
Handling

E
di

to
rs

D
et

ec
to

r E
xp

er
ts

Converters

CMSIM - RZ
CMSIM - ASCII

C++ External Code

DDD
Services

Document
Processing

Document
Management

Repositories
Expanded from CHEP 2003 Poster

IGUANA

OSCAR

ORCA

FAMOS

Documents

CMS Offline
Software

DDD Runtime
System

External Document
Handling

E
di

to
rs

D
et

ec
to

r E
xp

er
ts

Converters

CMSIM - RZ
CMSIM - ASCII

C++ External Code

DDD
Services

Document
Processing

Document
Management

Repositories
Expanded from CHEP 2003 Poster

Figure 3: DDD API Model [3]

Table 1: Examples of correspondence between XML
Elements and C++ objects

XML C++
<Material
 name="copper"…/>

DDMaterial

<Trapezoid name=” t1”
 dx="30*cm" …/>

DDSolid sub-class
DDTrapezoid, DDBox,
DDTube, etc.

<LogicalPart name="lp1">
 <rSolid name="t1"/>
 <rMaterial
 name= "copper"/>
</LogicalPart>

DDLogicalPart
(with reference to
DDSolid and
DDMaterial)

<PosPart name="pp1"
 copyNo="3">
 <rParent name="lp1"/>
 <rChild name="lp2"/>
 <Translation x="3*cm"
 y="10*cm"
 z="10*cm"/>
 <rRotation
 name="30DegreesX"/>
</PosPart>

Ddpos(
 DDLogicalPart parent,
 DDLogicalPart child,
 DDTranslation t,
 DDRotation r)

ALGORITHMIC DETECTOR
DESCRIPTION

Requirements
During the past year the sub-detector groups began

rewriting their generated XML files taking advantage of
features of the DDD that were not utilized in the software
that generated the current XML files in the Geometry
project. This has lead to some new requirements for the
DDD.

1. Sub-detector software experts want to
algorithmically create and position as needed,
DDD objects such as DDLogicalParts and
DDSolids.

2. We do not want to store such sub-detector
specific code with the main DDD.

3. We need to allow DDD access to these
algorithms with a clearly defined C++ interface
and its corresponding XML.

Implementation
As a result, the XML Schema has been extended to

include an Algorithm element and the C++ code has been
extended with a SEAL Plugin [10] in the Runtime System
(implemented as the DDAlgorithm class). The XML
Algorithm element can contain other elements such as
Numeric, String, Vector, Map and StringVector. These
elements are passed as arguments to the initialization of
the SEAL Plugin.

The SEAL-Core Libraries and Services Project is an
LHC Computing Grid Application project [9]. External
software is interfaced to the DDD Services via the SEAL
Plugin Manager. This mechanism provides algorithmic

creation and positioning of LogicalParts and other DDD
objects within one LogicalPart parent.

An XML snippet is given in Table 2 to illustrate the
structure of the Algorithm element. All DDD
expressions, such as those in the Vector element in the
example, are evaluated by the usual DDD expression
processing and all such expressions and constants are
available to the user in the XML as well as to the C++
external code.

Table 2: XML Fragment

<Algorithm name="DDHCalBarrelAlgo">
 <rParent name="TBHcal:HCal"/>
 <String name="MaterialName"
 value="materials:Air"/>
 <Numeric name="NSector" value="[numSectors]"/>
 <Vector name="DetWidth1"
 type="numeric" nEntries="[numDets]">
 154.0*mm, 161.8*mm, …
 </Vector>
 <Vector name="AbsorbMat"
 type="string" nEntries="2">
 materials:Aluminium, materials:Iron
 </Vector>
 <Map name="D1TypeToWidth" type=“numeric”
 nEntries="[numTypes]">
 normal=20.5*mm,
 missing=0.0*mm,
 narrow=20.0*mm,
 midsize=23.5*mm
 largest=75.0*mm
 </Map>
</Algorithm>

RELATIONAL DATABASE

Existing work
Our initial approach to using a relational database as an

alternative repository for the DDD was implemented by
syntactically mapping the XML Schema to a MySQL
Schema and migrating data from the XML documents to
the MySQL database [6]. This was successful in that it
was relatively automatic and the functionality was enough
for the DDD runtime to be instantiated from the relational
database. However, the mapping was not very rigorous
and has been superseded by a new scheme better suited to
the latest requirements.

Reason for new effort
The online community will be writing conditions,

calibration and slow control data to relational databases.
These databases need to have associations to objects in
the reconstruction software (ORCA) and potentially other
DDD client software. Therefore a mapping from the
DDD to the relational database world needs to be made.

Description of new effort
As a first step, a redesign of the detector geometry

database model [5] was undertaken using a more rigorous

database design approach instead of an automatically
generated schema and database. The resulting relational
detector geometry can provide a persistent link between
selected individual components in the expanded view
detector model of the offline software world and the
physical detector components as monitored in the online
database environment. This will allow us to maintain the
mapping between the two representations.

Additionally we need to consider new procedures and
tools for executing schema migration.

The relational database model we now have is
implemented in Oracle 9i and is considered a prototype.
It is a skeleton on which conditions, calibration, slow
controls and other relational databases can be attached or
associated. We are working on refining the model for
performance, on its integration with the software and with
other CMS detector related databases, and on the creation
of a portable, read-only version.

OBJECT STREAMER
The runtime system provides a streaming mechanism to

write and read binary files. These files can be used as a
local cache for the applications, so that the first run (or a
pre-run application) can load the files and subsequent jobs
can read from this cache. The streamer is faster than the
XML parsing. It can be used instead of or simultaneously
with the standard mechanism, which allows users to alter
the XML and run jobs using the sources.

COBRA INTEGRATION
The DDD is now a component of the CMS software

framework. This integration allows greater code re-use
and optimization. The repackaging also facilitates
configuration management, release, testing, and
maintenance, without compromising the architectural
integrity and modularity of the DDD.

SUMMARY
The DDD has been integrated into the CMS software

framework and continues to evolve as required by the
collaboration. Algorithmic positioning provides a new
way to produce DDD objects in the core graph/tree

model. We are starting to provide a few different means of
storage with an eye to helping the conditions and
calibration project to attach or associate their data with
the geometry model as well as for caching and speed
improvements for batch processing. The DDD provides
the necessary geometry services to the CMS software
project and evolves with user needs while remaining true
to the requirements in the original project.

REFERENCES
[1] M. Liendl, “Design and Implementation of an XML

based object-oriented Detector Description Database
for CMS.” Thesis, 2003, Vienna University of
Technology

[2] M. Case, M. Liendl, F. van Lingen, “ Detector
Description Domain Architecture & Data Model” ,
CMS Note 2001/57

[3] M. Case, A. Muhammad, M. Liendl, F. van Lingen,
“ CMS XML-based Detector Description Database
System” , CHEP 2003 Poster

[4] M. Liendl, F. van Lingen, M. Case, T. Todorov, P.
Arce, A. Furtjes, V. Innocente, A. de Roeck, “ The
Role of XML in the CMS Detector Description” ,
CHEP 2001

[5] A.T.M. Aerts, F. Glege, M. Liendl, “ A database
perspective on CMS Detector data” , CHEP 2004
Poster P225

[6] A. Muhammad, M. Liendl, F. van Lingen, A. Ali, I.
Willers, “ Migration of XML Detector Description
Data and Schema to a Relational Database” , CMS
Note 2003/31

[7] COBRA: http://cobra.web.cern.ch/cobra/
[8] DDD:

http://cmsdoc.cern.ch/cms/software/ddd/www/index.
html

[9] LCG Applications: http://lcgapp.cern.ch/project/
[10] SEAL Plugin documentation:
[11] http://seal.web.cern.ch/seal/
[12] XML: http://www.w3c.org/
[13] Object Management Group, Inc. (OMG) Model

Driven Architecture(MDA):
http://www.omg.org/mda/

