
DON QUIJOTE - DATA MANAGEMENT FOR THE ATLAS AUTOMATIC
PRODUCTION SYSTEM

Miguel Branco#, CERN, Geneva, Switzerland

Abstract

As part of the ATLAS Data Challenges 2 (DC2), an
automatic production system was introduced along with a
new data management component.

Previously data management tools used for the Data
Challenges were built as separate components from the
Grid middleware. These tools relied on a database of its
own which acted as a replica catalog.

With the extensive use of Grid for the entire DC2
production it is no longer possible to have a data
management tool that is designed to be independent of the
Grid middleware. Each Grid relies on a replica catalog of
its own along with Grid-specific data management
software.

ATLAS Data Challenges 2 has used uniformly the
resources provided by three Grids: NorduGrid, US Grid3
and LCG-2.

The solution we present was to build a data
management proxy service – Don Quijote - which
consists of a common high-level interface, whose
implementation depends on each Grid's replica and
metadata catalog as well as the storage backend.

Don Quijote provides management of replicas in a
services oriented architecture, across the several
"flavours" of Grid middleware used by ATLAS.

With a higher-level interface common across several
Grids a user such as the new automatic production system
can seamlessly manage replicas independently of their
hosting environment. Given the services-based
architecture a lightweight set of command line tools is
available for users to interact uniformly with ATLAS file-
based data.

Users can therefore uniformly manage files within or
across Grid flavours, e.g: moving files from LCG-2 to US
Grid 3 while maintaining attributes such as the Global
Unique Identifiers.

INTRODUCTION
Don Quijote [1], or DQ, is the data management service

for the ATLAS Production System.
Using Don Quijote users can locate replicas of files,

add, remove or modify both logical and physical entries
in grid replica catalogs. In addition a transfer service is
provided to replicate files between storage locations as
well as query each grid information system regarding data
storage facilities. The client tools integrate replication of

files with synchronization of replica catalogs, providing a
single command to move data within or across Data
Grids.

Don Quijote is built using a Service Oriented
Architecture providing an uniform interface to interact
with Data Grids.

DQ is modular by design; by plugging different
implementations of all required modules a DQ server can
be built against the grid middleware. There are currently
three* deployed DQ flavours: DQ-LCG for the LCG-2
Data Grid, DQ-NG for NorduGrid ARC and DQ-Grid3
for US Grid3 VDT.

USE CASES
A typical usage of DQ from the ATLAS Production

System [2] is as follows†: Windmill (the software that acts
as the automatic production supervisor) queries DQ to
discover where replicas of the input data files are located.
The job is then steered to the grid with most input data
available. The job executor on each grid [3] will trigger a
DQ replication to get the input data to a location within
that grid if the data is not available there. The job is
executed and the resulting output data is registered in the
native grid replica catalog. Later Windmill will validate
the actual presence of the files, both in the grid catalog
and on disk if necessary, by making a call to the DQ
server. After this last validation step has been done a
rename request is sent to DQ to give the output data its
final name.

A typical usage of DQ for a physicist is as follows: a
user wishes to perform analysis on part of a dataset
produced by the ATLAS Data Challenges. Using DQ
client, the physicist searches for a file named
"dc2.003011.simul.A6_dijet600._000*". The result
shows that most of the partitions are in NorduGrid storage
(actually there is no distinction on which grid the storage
element belongs to, since it makes no difference - this
information is only provided on verbose mode). The user
then triggers the replication of some of those files to a
storage element on his site. Later after the replication is
finished, he decides to get a local copy of these files to his
local working directory using the DQ end-user client tool.
Finally after doing analysis he produces a new file which
he wants to enter into a grid storage element for later use.

* A fourth one is under development to interface with EGEE gLite.
† In reality, the current Data Challenges doesn't use this fully integrated
approach as the production is pre-split between grids – there is no need
to steer jobs to different grids. It is expected that the usage of DQ by the
production system will soon match what is described.

miguel.branco@cern.ch

Using DQ end-user tools, he puts the file into a grid
storage element. Since the generated file was a POOL file
with the corresponding PoolFileCatalog.xml, the new
logical entry is registered into the grid native catalog
maintaining all attributes notably the POOL Globally
Unique Identifier (GUID).

DESIGN AND IMPLEMENTATION

Data and Storage Organization
In the ATLAS Data Challenges data is distributed

among three different Grids as it is produced. These grids
are LCG-2, NorduGrid and US Grid3. Within each grid,
data is distributed across many different sites.

In DQ the concept of a Storage Element is used. A
Storage Element is a location where data is stored and is
referenced by hostname‡.

A DQ server must be setup per grid flavour to
communicate with the underlying grid middleware.

Typically ATLAS has three different DQ servers
running, matching one DQ server per grid. For the end-
user the number of DQ servers or grids that he is
interacting with is transparent. Only by convenience or
usually performance is this known and the queries are
steered to a single DQ server, matching a single grid. The
Storage Element "host" is the distinguishing element for
DQ. Don Quijote seamlessly sees the storage elements of
all Grids by querying the underlying grid information
system to discover those storage elements.

The ATLAS Production uses the concept of Logical
Path Names (LPNs) to organize file-based event data. A
logical path name is an extension of the logical file name
(LFN). In addition to the LFN, a logical collection name -
a hierarchical structure similar to the path of a typical
*nix file system - is used. Together, the logical collection
name and the logical file name form a fully qualified
ATLAS production file which consists of a logical path
name (LPN) : e.g. /datafiles/dc2/simul/dc2.003011.
simul.A6_dijet600/dc2.003011.simul.A6_dijet600._

00043.pool.root§. In addition, all files have associated a
Globally Unique IDentifier (GUID). If this GUID was
previously generated by a separate tool as is the case of
POOL data, it is preserved.

The concept of logical collections has proven useful
both to organize data and allow migration of existing
catalog entries into future replica catalogs which may
natively support collections. Currently, in existing replica
catalogs the logical collection name is a meta-attribute
attached to the LFN.

Early in the design process there was the intention to
restrict the underlying file transport protocols to a small
number. Therefore it was decided that transfers between
storage elements either within a grid or across grids are
done using GridFTP [7] as the underlying transport

‡ Similarly to the EDG/LCG Storage Element (SE) concept.
§ In this example the LFN is just:
dc2.003011.simul.A6_dijet600._00043.pool.root

protocol. Hence DQ only supports GridFTP as the file
transfer protocol.

End-user interface
DQ client is accessible using an API. Two distinct user

interfaces have been built in Python using this API. One is
dms.py which provides a command line interface to the
full Don Quijote API. It is meant mostly for management
of data by production managers.

A second user interface, especially designed for end-
users is dms2.py. This encapsulates typical use-cases into
a more user-friendly interface. In addition more verbose
descriptions of the actions being taken as well as some
level of end-user protection of data are included.

Architecture

(1) Overview of DQ-LCG server and two LCG SEs

DQ provides a common interface to manage replicas.

Client tools were built on top of the layer interface to help
users deal with replica movement and registration within
and across grid flavours.

DQ does not contain a replica database. Past experience
proved that having a database which replicated the
contents of grid replica catalogs was difficult to maintain.
In a possibly chaotic environment such as the Grid these
catalogs tended to become unsynchronized.

Therefore DQ acts as a proxy service, by forwarding
the requests to the grid middleware it is bound to.

Server

(2) Overview of DQ modules

DqCore

DqGlobusRls

DqClassicReplicaAccessDqLcgReplicaAccess

DqPoolRls

DqConfigFile

DqFactory

DqInterface DqMonitor

DqUI

dq.py
Python Module
C++ Python

wrapper

C++ Client
Module

DqLcgInfoService DqVdtInfoService

DqNgInfoService

DqServerLcg

dms.py
Production User

Interface

dms2.py
End-user Client

tool

DqServerNg DqServerVdt

LCG RLS

lcgse02.ifae.es

castorgrid.cern.ch

DQ Server
Catalog

Replica
Access

Server

Information
Service

DQ Client

BDII
GFAL

A DQ server is made of four main modules: Catalog
module, Replica Access module, Information Service
module and the Server Request handling module.

The catalog module deals with all interactions with the
native grid replica catalog. This includes searching logical
files, renaming, adding, removing both logical and
physical file entries, as well as built-in metadata
attributes. This module has two distinct implementations
sharing the same common interface: one implementation
for Globus RLS 2.x [4] and another for the EDG RLS 2.x
[5] using POOL 1.6.5 File Catalog [6] interface.

The replica access module provides support for data
transfer. There are two implementations of this service:
one for LCG and another one shared by both NorduGrid
and US Grid3. The LCG implementation supports "classic
Storage Elements" (plain GridFTP [7] servers) plus SRM
[8] storage elements. It uses the LCG_util library and
GFAL [9]. NorduGrid and Grid3 implementations support
only plain GridFTP servers.

The information service module provides basic
functionalities to query each grid's information system
regarding storage elements. The interface includes calls to
find grid storage elements, to verify if a host name is a
valid storage element within a grid, as well as to resolve
full storage URLs given a hostname. There are three
different implementations of this interface since all
supported grids use a different information schema.

The server module deals with the network server and
the handling of client requests. This provides a common
server interface with two distinct implementations: one
using SOAP web services (implemented using gSOAP
[10]) and another using plain sockets. Initially DQ was
built as a server-side application using plain sockets and a
custom-made communication protocol. Later the SOAP-
based server was introduced and there is the intention to
gradually move to supporting web services only. The
server module is also responsible for handling a pool of
worker threads meant to process client requests. This pool
supports: priorities (short requests are processed first);
queuing of requests; different queues depending on the
expected time to process a request (e.g. a file transfer
request which may have no pre-defined timeout is
processed by a special queue handled by a subset of the
worker threads). This allows for better response times and
server availability when some users are querying the
catalog, others inserting or modifying entries and others
moving files around.

Security

The DQ servers can be ran both in secure or insecure

mode.
On secure mode, the connections to DQ use GSI [11],

which also requires a GSI-enabled DQ client. The user
certificate is delegated by the server and all the requests
to each grid information system, replica catalog or storage
are done on behalf of the user.

On insecure mode, the connections to DQ are not
protected. A limited subset of actions is available. All

actions are performed by the server on behalf of the user
using a service certificate running on the server side.

The insecure mode was deployed at a later phase, as it
proved difficult for ATLAS to coincide all grids’ VOs
and policies, in time for the Data Challenges. This also
allowed a more convenient migration of users to a grid
environment for analysis.

The security model is under revision as it is an area for
substantial improvement – depending also on the
existence of standards for secure web services.

Client
The client is a shared library built in C++.

SWIG/Python wrappers have been built along with a
python module (dq.py) which implements a Python class
(DonQuijoteClient). This allowed for quick development
of scripts that use DQ from Python. This scripting ability
proved to be very useful during the ATLAS Data
Challenges where mass-registration, removal or
replication of files was often necessary.

Using the Python/SWIG wrappers and the shared C++
library the two clients referred on "End-user interface"
section have been built.

USAGE TO DATE
DQ has been used since the start of the ATLAS Data

Challenges 2. Its main client is Windmill - the ATLAS
automatic production supervisor. Windmill uses DQ
mostly for validation of finished jobs - to rename the
output data to its final name - as well as to find replicas
and locate existing data. The phase of job definition is
also partially plugged into DQ allowing jobs to be
released for production only after their input data has
been produced and verified that is accessible from DQ. In
addition, DQ has been used outside of the automatic
ATLAS production to steer data within and across grids.
By replicating data, the production managers can submit a
set of jobs to a different grid or to spread data between
sites within a grid.

End-users are now using DQ to locate and retrieve data
as well as to generate POOL XML File Catalogs for their
analysis.

Finally, overviews of the location of ATLAS data
across all sites and all Grids are regularly taken by
making extensive queries using the DQ API.

CONCLUSION
The ATLAS Data Challenges 2 was the first Data

Challenges to use a full-scale Grid production. A
production system was introduced and with it a new data
management component.

DQ was subject to changes during this period mostly as
the Data Challenges load increased and additional
functionalities were required.

Since the beginning of DC2 on early July, DQ servers
for NorduGrid, US Grid3 and LCG have processed more
than half a million requests - the vast majority operations
on the grid catalogs without data movement. To date,

around 6 TB of data have been moved using DQ servers.
This is expected to increase substantially with the Tier0
exercise.

As grid middleware becomes more interoperable, it is
likely that the number of DQ implementations per module
is reduced. The focus on the development of DQ shall be
on providing end-users with user-friendlier tools and
increased functionality in terms of data management for
the production managers.

ACKNOWLEDGEMENTS
The author would like to acknowledge the Faculdade de

Engenharia da Universidade do Porto and CERN,
European Organization for Nuclear Research, where DQ
was first developed as senior thesis project.

Finally, the author would like to acknowledge the
Brookhaven National Laboratory for the support on the
development of the DQ end-user tools.

REFERENCES
[1] Don Quijote is described at
 http://cern.ch/mbranco/cern/donquijote
[2] L. Goossens [501], this conference.
[3] M. Mambelli [503], D. Rebatto [364], O. Smirnova

[499], this conference.
[4] Globus Replica Location Service is described at:
 http://www.globus.org/rls/
 [5] EDG Replica Location Service is described at:
 http://edg-wp2.web.cern.ch/edg-wp2/
[6] POOL File Catalog interface is described at:
 http://lcgapp.cern.ch/project/persist/catalog/
[7] GridFTP Protocol is described at:
 http://www.globus.org/datagrid/gridftp.html
[8] SRM is described at: http://sdm.lbl.gov/srm-wg/
[9] J-P. Baud [278], this conference.
[10] gSOAP is described at:
 http://www.cs.fsu.edu/~engelen/soap.html
[11] GSI is described at: http://www.globus.org/security/

