THE CONFIGURATIONS DATABASE CHALLENGE IN THE ATLAS DAQ
SYSTEM

D. Burckhart-Chromek, M. Dobson, J. Flammer, D. Liko, R. Jones, L. Mapelli
European Organization for Nuclear Research (CERN), Geneva, Switzerland

A. Amorim, N. Fiuza de Barrosb, D. Klose, L. Pedro
Universidade de Lisboa, Faculdade de Ciencias (FCUL- CFNUL), Lisbon, Portugal

I. Alexandrov, V. Kotov, M. Mineev, S. Korobov
Joint Institute for Nuclear Research (JINR), Dubna, Russia

E. Badescu, M. Caprini
National Institute of Physics and Nuclear Engineering, Bucharest, Romania

A. Kazarov, Y. Ryabov, L. Soloviev
Petersburg Nuclear Physics Institute (PNPI), Gatchina, St. Petersburg, Russia

S. Kolos®, University of California, Irvine, USA

: On leave from PNPI

Abstract

The ATLAS trigger and data acquisition system
(TDAQ) uses the database to describe configurations for
different types of data taking runs and different sub-
detectors. Such configurations are composed of complex
data objects with many inter-relations.

During the TDAQ system initialisation phase the
configurations database is simultaneously accessed by a
large number of processes. Such processes can be notified
about database changes that happen during or between
data-taking runs.

The paper describes the architecture of the
configurations database. It presents the set of graphical
tools, which are available for the database schema design
and the data editing. The automatic generation of data
access libraries for C++ and Java languages is also
described. They provide the programming interfaces to
access the database either via a common file system or via
remote database servers, and the notification mechanism
on data changes.

The paper presents results of recent performance and
scalability tests, which allow a conclusion to be drawn
about the applicability of the current configurations
database implementation in the future DAQ system.

INTRODUCTION

The Online Software [1] is a part of the ATLAS TDAQ
project. It encompasses the software to configure, control
and monitor the TDAQ system but excludes the
processing and transportation of physics data. It does not
contain any elements that are detector specific as it is to
be used by all possible configurations of the DAQ and
detector instrumentation. It must co-exist and co-operate
with the other sub-systems, in particular, interfaces are
required to the data-flow, triggers, processor farm, event
builder, controllers of detector read-out creates and
Detector Control System (DCS).

The Configurations Database is the essential part of the
service to configure the TDAQ system. It is extensively
used by the control service to setup and to diagnose the
whole TDAQ system and detectors.

The paper describes what users expect from the
configurations database and why we are talking about the
challenge, it’s design and implementation, the results of
this year performance and scalability tests [2] and the
experience from on going combined test beam.

REQUIREMENTS

The initial user requirements were collected within the
framework of the ATLAS data acquisition and event filter
prototype —1 project [3]. Later they were reviewed and
updated by the competent working group including
representatives from all TDAQ systems and detector [4].

The users would like to have a comprehensive and
flexible configurations database, as it is described below.

The database is accessed simultaneously by many
applications during TDAQ initialization. Each application
can read different set of parameters in accordance with
it’s needs (varying from several bytes up to tens of
Mbytes) and can be notified about data changes if
subscribed. The total number of applications including
high-level trigger may reach in the final system several
thousands.

To speak on a common language across different
TDAQ systems and detectors it is desirable to have a
database schema describing common data types. Such
schema can be extended as required by the systems and
detectors. The relations between TDAQ components and
complexity of the TDAQ hardware require many cross-
relationships between data items describing them. The
most appropriate data model satisfying above
requirements is the object data model.

The developers would like to have a mechanism to
access database information via data access library

(DAL), which maps database schema to classes of used
programming languages (C++ and Java) and instantiates
objects of such classes from database data. In addition,
the DAL’s application programming interface (API)
should be completely independent from the database
implementation and the application’s code should not be
modified in case of the database technology change. Since
TDAQ systems and detectors often update the database
schema during development, it is necessary to automate
as much as possible the DAL generation procedure.

The configurations database should provide a graphical
editor, which is capable to work with database informa-
tion of any type and be customizable by database deve-
lopers to present dedicated data views.

The database has to provide a way to describe a set of
parameters (i.e. “configuration”), which is specific for
given type of run and used hardware. Each detector and
TDAQ system may have several configuration
descriptions for physics data taking, calibration or debug
purposes. It should be simple to merge such configu-
rations into a combine one.

The database has to describe the current state of the
DAQ system. The old configurations should be stored in
archives and can be accessible for example from the
offline conditions database [5].

DESIGN AND IMPLEMENTATION

Common Schema

The data structure is described by the common schema,
which is agreed across all TDAQ systems and detectors
[6]. The common schema includes several groups of
classes to describe:

e the software releases including programs (a binary

or a script), libraries and supported platforms;

e the hardware including racks, crates, modules,
computers, interfaces, links, cables, networks and
their composition into hardware systems;

e the control including applications (an application
corresponds to a process to be started under certain
conditions; it points to computer and program and
defines their parameters), resources (a hardware
object or an application which can be temporary
enabled/disabled) and segments (an individually
controlled container object, that is composed of
resources, applications and nested segments);

e the configuration including partition object (lists
parameters and segments for given run).

Each TDAQ system or detector can extend the common

schema to introduce classes describing their specific data.

Data Organisation

The data are stored in folders. The folders are
organized in the tree, which corresponds to the actual
hierarchy of the TDAQ systems and detectors, as it is
shown below:

Database
Repository

[| Detector 1

(] Detector 2 Schema

Hardware
Software Release

Detector N Segments
Level 1 Configurations
Data Flow

High Level Trigger
Online Software

Combined

Figure 1: Example of database folders and files

Each folder is used to keep description of a TDAQ
system or a detector. Each folder is organized in a similar
way to easily identify the schema extensions, description
of system or detector specific software and hardware,
segments, and set of supported alone configurations. The
combined folder keeps configurations, which are compo-
sed of systems and detectors segments.

Database Technology and Tools

The data themselves are stored as XML files using
OKS persistent in-memory object manager [7]. One file
can include another XML files. A tree of XML files
describing some configuration can be build from single
root file. The OKS provides the UML-like graphical
editor to browse and to modify the database schema and
the customizable graphical data editor.

2] View 'Software Repository View' _[o]x
- B e o %
v, vFa E S X Bl R el B 8] X
Sehema
= _—
B Oblast BelongsTo
| Mame: string = Unknown’ T SW_Repository
: a i}
Exclusive | BinaryName: string s IMame: string = Unknown SW
Descriptinn: string 1.1 UM installationPath: string = Fustlacal
Authars: list of string SW_Ohjects
EShared | HelpURL: string = “hitp:” Ui 0.4
ComputerProgram FpgaProgram
DefaultParameters: string | | YersionlD; u32 = "0x0”
Haet_parameters CadPraject: string
CheckString: string
é Checksum: u3z = "0x0°
ChipType: string
| Bmary'l Script FlashRamBlock: u32 = ‘0x0° wTags
Shell: string SourcelRL: string
FProgramType: string = “Invalid”
DeviceMame: string = ‘Invalid®
Platform
bl
e HW_Tag: enum = 66673
0.M Q
.EmaryFMe Tag Tag 1.4
EryName string 1.1 |3W _Tag: enum = ‘gee3Z-opt” |
: 5
Close

Figure 2: Example of OKS Schema editor view

The OKS data can be accessed either via native OKS
C++ API using file system, or via remote database server
(RDB) providing CORBA interface to OKS. Both OKS
and RDB provide read-write access to data and allow
subscribing on data notification.

Programming Interfaces

The user programs never use OKS or RDB directly.
Instead there are two layers of database access to avoid
dependency on database implementation.

The first layer provides abstract interface in C++ and
Java to access database objects, to get and to put values of
their attributes, to subscribe on objects modification and
to get classes’ meta-information. The implementations of
such abstract interface are available for both OKS and
RDB technologies and in future can be created for others.

The second layer is the DAL itself. It only uses abstract
interface, so an implementation is completely independent
from underlying database technology. The DAL is gene-
rated from the database schema and optionally can
include user-defined algorithms (methods written by the
user for generated C++ and Java classes).

Below there is a schema describing relations between
database interfaces and users:

atd

text editors
scripts

X

schema editor
data editor

i ‘.“l“‘.. ed
Generated

DAL

user
processes

Abstarct DB
interface

Figure 3: Database’s interfaces and users

The user’s code only sees generated DAL and abstract
DB interfaces. An example below demonstrates their
usage:

// implementation object
::RdbImplementation impl;
// database object using combined TEST configuration
::Configuration db(" combinedy/partitions/test.data.xm/’, &mpl);
// find application (an object from generated DAL)
dal::Partition * p = db.get<dal::Partition>("7E57");
// get partition default host
dal::Computer * host = app->get_DefaultHost();
// find new host
dal::Computer * host2 = db.get<dal::Computer>(*new-pc");
// set new partition default host
if(host != host2) p->set_DefaultHost(host2);

// commit above modification and print out result
if(db.commit()) {
std::cout << “use host” << host2->get_Name() << '\n’;

b
else { std::cerr << “ERROR: Commit failed’ << std::endl; }

Figure 4: Example of code using DB interfaces

Database Objects

The database information is stored inside objects. An
object is an instance of the database schema class. A class
defines set of attributes and relationships with other
objects. A class may inherit from another classes and
have set of methods.

The possibility to set relations between objects
simplifies the creation of full configuration description.
There is special object of Partition class. It is a root of tree
of other objects describing configuration. In particular, a
partition object lists objects, describing top-level
segments. In turn, a segment object lists nested segments,
resources and applications. All objects describing confi-
guration can be found by simple navigation starting from
the root partition object. This significantly improves
performance since there is no need to execute any queries,
but instead to use direct links to database objects.

SCALABILITY AND PERFORMANCE
TESTS

The requirements for the performance and scalability of
the configurations database for the final system are very
strong. It is clear that a single server is not capable to deal
with thousands of clients reading different sets of
configuration data at the same time. One of the possible
solutions is to have single central database server
providing access to the multiple RDB servers. The TDAQ
and detector processes access such RDB servers and
never get the data from the central server directly. The
goal of recent tests was to find the performance and
scalability characteristics of a single RDB server in order
to be able to calculate required number of such servers
during TDAQ commissioning and for the final system.

The results presented below show the time required to
read from database a single object, a composite object and
an array of data. The clients were run on 600 MHz PIII
nodes with 100 Mbit/s Ethernet card, while the server was
run on 2.4 GHz dual PVI node with 1 Gbit Ethernet card.
All clients started simultaneously, established connection
with RDB server, got required data and closed
connection. The measured times are presented depending
on number of clients from 10 to 210.

Read single object

Below there are results of reading small single object
by unique identity and by query (no index). The average
value linearly grows for both types of object access.

Time
0.3" 1 —a— getby ID
' —=— getby query
0.2”
0.1”
0.0”

70 90 110 130 150 170 190 210
Number of clients

10 30 50

Figure 5: Single object read results

Read composite object

The composite object used for test was composed of
2042 small nested objects simulating control hierarchy of
TDAQ for final system. Each small object was read by a
separate network operation. Below there are average and
maximum times for such test, which are quite close.

Time
) —a— average
507 T —=— maximum
40”7
30”7
20"
10",
0"

10 30 50 70 90 110 130 150 170 190 210

Number of clients

Figure 6: Composite object read results

For 210 clients the server processed around 430,000
requests in 55 seconds, or about 8,000 requests per
second.

Reading arrays of data

Below there are results of reading 4 objects containing
arrays of integers of different sizes. The figure presents
maximum times only, the average ones are in two times
smaller.

Time

501 T Lo
40" 7| —e— 8 MByte
30" 1 —— 16 MByte
20" ./07“(' . o7
10 Y

0”

90 110 130 150 170 190 210
Number of clients

10 30 50 70
Figure 7: Arrays of data read results

With such test the performance of the RDB server
reached more than 50% of raw network performance
(3.36 Gbytes passed in 50 seconds, or 538 Mbits/s).

TEST BEAM EXPERIENCE

All TDAQ systems and detectors use the presented
database to describe their test beam configuration data.
The described test beam system includes more than 50
computers and several racks of electronics. Each detector
and TDAQ system has set of segments, which are shared
to build set of combined configurations.

During the test beam there were several major changes
in the database schema making new data logically
incompatible with old ones. This resulted creating several
co-existent versions of databases.

Changes of the database files are stored in CVS. It is
done by automatic cron job or by explicit user request.
This allows easily checking out a configuration to see
what parameters were used for past runs.

CONCLUSIONS

In order to provide required functionality for the final
ATLAS TDAQ system the configurations database has to
meet challenging requirements. It needs to have high
performance for simultaneous access from multiple
clients, to support object model for data description, to
provide automatically generated data access libraries, to
have graphical tools for the database schema design and
the data modification.

The present implementation of the configuration
databases is done on top of OKS. The testbeam
experience has shown it provides required flexible data
organisation. The recent performance and scalability tests
have proved it can be used in combination with multiple
RDB servers for implementation of the final system. At
the same time the design of the configuration database
includes clear separation between programming interfaces
and database technology backend, so in future the OKS
can be replaced by something also without disruption of
the user code.

REFERENCES

[1] Atlas Online Software, http:/icern.ch/atlas-onlsw

[2] ATLAS DAQ/Event Filter Prototype -1 Project,
http://cern.ch/atlas-onlsw

[3] ATLAS DAQ/Event Filter Prototype "-1" Project,
http://atddoc.cern.ch/Atlas

[4] 2004 Large Scale and Performance Tests of the
ATLAS HLT/DAQ Software,
http://cern.ch/atlas-tdag-large-scale-tests

[5] Conditions DB, http:/ Icgapp.cern.ch/project/CondDB/

[6] Common Configurations Database Schema,
http://cern.ch/Atlas-onlsw/components/configdb#Schema

[7]1 OKS User’s Guide, 1. Soloviev, 2002, EDMS note,
http://edms.cern.ch/file/403060/2/

