
Panoramix

G. Barrand, LAL, Orsay, France∗

Abstract

Panoramix [1] is a visualization environment for LHCb.
We shall present technological choices behind this software
: GUI, graphic, scripting, plotting. We shall present the
connection to the framework (Gaudi) and the today sta-
tus. We shall present the plans to integrate various analysis
tools in order to work with DaVinci, the physic analysis
environment for LHCb.

GOALS

Panoramix intents to handle event display and statistical
visualization in a consistent way. Panoramix had been sub-
jected to a software agreement between LAL and LHCb in
May 2002.

POSITION IN LHCB SOFTWARE

Panoramix is on top a whole hierarchy of softwares :
SEAL, POOL, Gaudi, LHCbCore. From LHCbCore some-
one can visualize the detector, described in XML, and data
of the event model. The reconstruction is done with the
Brunel project. Panoramix uses now some of the Brunel
packages to visualize data of the event model (RICH). The
DaVinci project is the place where the physic analysis re-
ally takes place, where people enter the physic. Panoramix
has now connection to DaVinci and can visualize some of
its data (Particle class). Put all together, Panoramix is ”On
top of EVERYTHING” in the LHCb software environment.
A direct consequence of that is all sublayers must be up and
running so that someone can work...

ENGINEERING CHOICES

Panoramix is plugged directly to the Gaudi event model
manager (or data framework) in order to be fluent in ac-
cessing data. We do not attempt to have a client / server
model by passing representations through files or the net-
work. Since the data framework is in C++ and that most
of native visualization and GUI tools coming from desktop
providers are in C or a derivative (C++, ObjectiveC), we
use C++ for all. We target the three laptops of the mo-
ment : Linuxes, Windows, MacOSXs and this by using
their native environment in order to get the best of desk-
top providers. We use the OpenInventor C++ scene man-
ager for all 3D or 2D data representations (including plot-
ting). And last we try to put in ”reusable elsewhere pack-

∗ barrand@lal.in2p3.fr

ages” the code not fully dependant of the experiment. Here
the ”reusable elsewhere packages” are the ones put in the
OpenScientist integration and distribution. See OpenSci-
entist web site or CHEP’04 paper and slides for more on
the engineering choices [2].

VISUALIZATION AND GUI PRODUCTS

For the rendering layer we use more than ever OpenGL
which comes with desktop provider products. For the scene
graph manager we use OpenInventor by using the GPL
Coin implementation of the System In Motion company
(Norway) [3]. We do all the graphic with the uppers,
including histogram and function plotting. For the GUI,
see OpenScientist slides and paper for the problematic of
a choice. We describe the GUI in XML and use the OnX
package to create the GUI by using native toolkit of desktop
providers. This is simple and give the best performances.
The callbacks are scripted. Python is used as long a sim-
ple string front end to the system dynamic loading (dlopen,
dlsym on Linux). An XML GUI callback looks like :

<widget class="MenuItem">
<label>Forward+match+unique</label>
<activate exec="Python">
from Panoramix import *
sys_import(’my_tracks’)

</activate>
</widget>

or :

<widget class="MenuItem">
<label>B Decay</label>
<activate exec="C++">
Panoramix B_decay

</activate>
</widget>

The first menu item will execute the my tracks.py user
Python script and the second, the C++ compiled callback
function ”B decay” put in the Panoramix callback DLL.
The signature of a callback function is of the form :

extern "C" {
void B_decay(IUI& aUI,
const std::vector<std::string>& Args) {
// User code.

}
}

Note that for Python we use the LCGDict wrapping to wrap
(strangle) C++ code.



GUI PARADIGM

The GUI is organized ”a la PowerPoint”, that is to say
one compact GUI panel organized around a document area
made with a stack of Inventor viewers (the slides). At left of
the document area ther is a data tree browsing widget, at the
top a menu bar and at the bottom a command typing area.
Various dialog panels can be mapped through the menu bar
items in order to parametrize and trigger an action (like
printing, changing modeling parameters, etc...).

CONNECTION TO THE DATA
FRAMEWORK

”data framework” should be understood as the software
permitting to manipulate the event and detector models and
permitting to connect the event (”data’) and detector mod-
els to facilities like storage, graphic, GUI, scripting. The
data framework is here Gaudi. Gaudi does not do any kind
of graphic (no Gaudi::DataObject::draw() method around,
which is correct). Gaudi manipulates services, converters,
algorithms,etc... that permit someone to operate the ”tran-
sient store” containing in memory instances of the event
model.

OnX is here the ”interactivity framework”. It does
the connection between GUI (from an XML description),
viewers, scene manager (Inventor), renderer (OpenGL) and
scripting. The connection ”data framework” / ”interactiv-
ity framework” is done through the Gaudi OnX service,
put in a standalone package, the Vis/OnXSvc. The vari-
ous elements of the event model have a ”representation” (a
datarep). A datarep code is in general a Gaudi converter
for the Inventor technology (an SoConverter). An SoCon-
verter, for example SoMCParticle, builds from a data in-
stance (here an MCParticle) an Inventor scene graph. When
built, the scene graph is send to OnX to be displayed,
in general, in the ”current viewer”. A visualization re-
quest starts from a scripted GUI callback ; the OnXSvc
is searched, then a ”data convertion for Inventor” request is
activated for various pieces of selected data.

It must be pointed out that due to a massive usage of ab-
stract interfaces, various parts are nicely decoupled. For ex-
ample an SoConverter is not a StorageConverter. A direct
consequence is that someone can get rid of a technology
and migrate to a new one, without touching to everything.
It permits also to open the system to various other visual-
ization technologies. IT PERMITS TO EVOLVE.

THE VIS/SO PACKAGES

Physicists enter into action by programming some So-
Converters put in some Vis/So package. For the moment
exists the SoDet (G.Barrand, S.Ponce) to build Inventor
representation of the detector. This package is very generic
and is now sparely touched ; used with the LHCb XML
detector description it offers a very flexible way to enter
and view a geometry. Note that there are various interac-
tive goodies that permits to ”expand” or ”contract” volumes

(from J.Boudreau SoDetectorTreeKit). The GUI can view
the detector and event tree in the browsing tree widget.

The SoEvent package is historical and had been used
to gather first datareps like SoMCParticle, SoMCHit
(P.Mato) and representations for the trackers (J.Van.Tilburg
NIKHEF). The SoCalo (I.Belyaev ITEP) is a dedicated
package to build representations for calorimeters. The
SoRich (C.Jones Cambridge) is for representations for the
RICH data. The SoStat (G.Barrand LAL) permits to rep-
resent with Inventor histograms put in the Gaudi transient
store ; it uses the HEPVis SoPlotter Inventor nodekit. And
at last there is the SoHepMC used to visualize HepMCs
and used in conjunction of the LHCb Geant4 simulation
(Gauss).

We must point out that people did not seem to suffer of
Inventor programming.

APPLICATIONS

Two packages remain to present : Vis/Panoramix
and Vis/LaJoconde. Panoramix contains the
Panoramix main.exe program which is a standard Gaudi
main. This package contains also the Panoramix.onx and
other *.onx XML files describing the GUI. It contains also
some C++ callbacks along with various Python scripts
sufficiently generals to be put in the common pot. It
is in scripts and callbacks that people can setup their
views (number of regions with their size and position,
background colors, etc...) and decide of what they put in
their scenes. This could be done in Python or directly in
C++ in case some Python wrapping is lacking, some too
tricky C++ is needed (no comment) or intensive speed is
required.

The LaJoconde package had been introduced histori-
cally to connect to ”The DaVinci Code” (where the secrets
of LHCb physic is hidden sometime in mysterious algo-
rithms). It had been introduced for coarse graining organi-
zation but will probably be transferred back to Panoramix
in future so that physicists manipulate only one front end
interactive program. This will depend of the capabilities
to build coarse graining job options files in a way to con-
nect/disconnet easily the access to DaVinci.

SPEED

Due to basic choices (stick to desktop providers and be
plugged directly to the data framework) the system is fast
(and the author is ready to challenge anybody claiming to
have something faster). BUT, we must always ”have an
eye” on Inventor. It is a powerful tool and then can be dan-
gerous. A scene graph may become too fat and slow down
the creation of a data representation. But there are numer-
ous ways to optimize the size of scene graphs (share color,
line styles nodes, create dedicated nodes to handle huge
collections of data, etc...).

Experience shows that on local machines scene graph
with 10000 up to 100000 nodes are ok. For for more orders



of magnitude, things must be optimized. But someone must
be aware that a crowdy scene graph oftenly means a crowdy
picture on the screen. Then the secret of being fluent is not
in being able to handle big scene graphs ; it is in being
fluent in selection into the data of what is really relevant.
Up to now, at least for what is done in LHCb, speed is
sufficient. (The author is more worried by what is (not)
done in another more bigger experiment around)

PROBLEM AROUND GEOMETRIC
BOOLEAN OPERATIONS

Problem remains around the visualization of some par-
ticular cases of boolean operations over volumes (we call
that the ”coplanar faces” problem). Dixit E.Chernyaev, the
author of the algorithm (the BooleanProcessor of Geant4)
there are cases where things cannot be decided (easily) and
the best way is to avoid to have coplanar faces on some
operations. Fine, but it is hard to explain to the detector
people that they have to add or remove some matter here or
there in order to pass a visualization algorithm.

A non-algorithmic solution is perhaps possible by using
the stencil capabilities of OpenGL. Code had been found
in Australia but not yet put in an Inventor node and in-
tegrated / tested in the system. A side effect would be
that it will probably kill the vector PostScript production
for these views. During CHEP’04 the author had noticed
that the CMS visualization team had found another way to
deal with this problem (by working on triangles) ; to be
explored...

INSTALLATION AND DISTRIBUTION

We are not yet fluent in fully stand alone installation on
a (remote) local machine. We remember that a display is
on top of everything and that the three common desktop
are targeted. Then be fluent in installing the display passes
by being fluent in installing all the below. Today, bina-
ries (Linux, Windows) are regularly reconstructed on the
/afs/cern.ch areas (lot of thanks to Florence Ranjard) and
users run them on their local machine. (Doing remote X11
on lxplus is definitely not recommended). Then we use
CERN as a central integration / binary construction / dis-
tribution place and THIS IS GOOD. (The author strongly
believe that this is the number one role of CERN). But we
do not use CERN at run time but use local machines seeing
CERN with afs. In this schema CERN is anyway around at
run time as a STRONG afs server provider. For more, we
strongly rely on efforts done around CMT (and PACMAN
?) to provide at some time straight forward source or binary
local installation of everything. (See CHEP’04 Christian
Arnault poster about ATLAS software distribution).

LCG, WHERE DO WE GO ?

Before LCG, situation around the basic layers where
simple. We had Gaudi and the GaudiRootDb to handle

event file reading. At some moment the author had even
a way to read event by using the light Rio package (see
CHEP’04 Rio paper). Now, the situation is more compli-
cated ; Gaudi is over SEAL and ”POOL over ROOT” is
used for storage. Panoramix is then on top of much more
things not really deeply though to work together. The port
on MacOSX had been a pure nightmare and problems still
remains for that platform : the only presence of ROOT in-
duces to run in ”bind at launch” mode and that slows down
the startup of everything. There are also mysteries around
dynamic loading and execution of static object constructors
done with Gaudi and SEAL / PluginManager

SURVEY BY A PHYSICIST

In the software agreement, was mentioned that a physi-
cist should be involved (at partial time) to do the synchro-
nisation engineering / physic during the whole story. This
never happened. For example, despite that Panoramix re-
ceived code contributions from numerous people and that it
is used by various people, no physicist ”strongly visualiza-
tion driven” spontaneously emerged to survey that critical
elements of the event model received a representation. The
software engineer (the plumber) can’t have all the LHCb
detector along with all the event model and physic algo-
rithms in head in order to decide what and how things
should be represented. It would be welcome to avoid a last
minute rush on that point.

DOCUMENTATION

The specific Panoramix html pages and paper documen-
tation are produced with Doxygen from dedicated .h files
put in the Panoramix package. Some of the files are load-
able from the program to form a help pull down menu and
contextual helps. For an SoConverter programmer, the doc
of Gaudi, Inventor and some of the OpenScientist packages
(like OnX) are available online and on paper (for Inventor
there are the Adison and Wesley books [4]). The nice user
web page of Thomas Ruf could be found on the web [5].
Is it a basement for a wiki ? About the available represen-
tations of the LHCb event model, the content of the doc-
umentation is clearly insufficient ; but is it to the software
engineer to produce this part of the documentation ?

INTEGRATION OF STATISTICAL TOOLS

Someone can browse (for long now) the ”stat” tree of
the Gaudi transient store and click an item to visualize an
histogram. The plotter used is the HEPVis/SoPlotter one
done with Inventor. Efforts had been done in order to cover
good part of the well known plotting cases used in HEP
(see CHEP’04 OpenPAW paper). In the LaJoconde GUI
someone has already a dedicated panel to visualize algo-
rithms (and their properties) and reinitialize them. We have
to compleete this panel in order to change the properties of
algorithms. Someone can loop on events. Clearly an in-



tegrated GUI tool permitting to visualize and program the
chaining of the algorithms would be ideal.

INTEGRATION OF OPENPAW

The integration of OpenPAW (based on the same tech-
nologies) should be straightforward. It will consist to make
the Gaudi/stat tree accessible from the KUIP commands in
order that someone can type :

OPAW> CD //GAUDI/STAT
OPAW> H/PLOT MY_DAVINCI_10
OPAW> NT/PLOT MY_TUPLE.(E*1000) PT>1000

This integration is forseen for end of 2004.

INTEGRATION OF OTHER TOOLS

Had been demonstrated than from a python shell, some-
one can spawn a DaVinci task with Panoramix (to display
an event or plot an histo), Hippodraw and ROOT. Then
physicists will have tools to plot and fit histograms. But,
are we going to be happy with that ? Probably not. A
physicist will be let with a desktop crowded with stan-
dalone GUI windows, each having its own logic. At the
engineering point of view the situation is not going to be
satisfactory too because all these tools have incompatible
backend technologies (rendering, GUI). At LAL, some job
(low priority) is done to try to integrate some of these tools
within Panoramix. The way to do will be the same for all
; arrange to have for these tools an OpenGL (or Inventor)
driver to capture their visualization in one of the Panoramix
viewer (here an OpenGL or Inventor native widget man-
aged by OnX) ; after try to integrate their GUI in a way or
another, the best being to have an OnX XML description
for them.

HIPPODRAW INTEGRATION

LHCb people showed some interest to this tool. The de-
sign of it is so that someone can easily get rid of the default
GUI and rendering (all in Qt), and comes with new ones.
The author had given the basement of an OpenGL driver for
it and an OnX description of the famous ”Inspector panel”
starts to exist at LAL (OpenScientist / Hippo package).

ROOT INTEGRATION

The integration of ROOT will go through an implemen-
tation over Inventor of the painful TVirtualPad (some kind
of strange mixture of GUI, rendering and scene manager
virtual methods). A prototype exists (OpenScientist / Man-
grove package). With the SoRootPad nodekit, someone can
visualize a TGeo with OnX and Inventor and also the bins
of a TH. But more work have to be done to have the full
THistPainter renders over Inventor (or over OpenGL). But
this is feasible. Any volunteer ? One ideal situation would
be that the ROOT team provides an OpenGL driver for the
plotting (today this exists only for the ”3D”).

JAVA, FREEHEP, JAS

Here the situation is more difficult, not so much because
of the language but more because of the default GUI sys-
tem promoted by the java camp (AWT/SWING). Up to
now it had not been possible to integrate Inventor view-
ers within an AWT/SWING GUI and then to use jas as a
GUI integratation place. The other way around seems not
so easy too ; that is to say capture the plotting of Free-
HEP/jas to have it displayed in native windows managed
by OnX. Then strong expertise would be required here to
have a direct integration. Someone may though to have in-
direct integration, like converting Inventor scene graph to
java3d or FreeHEP graphic system and vis versa, but this
will clearly be less fluent at run time.

ATLAS AGORA PROTOTYPE

Must be mentionned here that at LAL the AGORA pro-
totype had been done in order to use the Panoramix visu-
alization environment over the ATLAS Athena framework
(based also on Gaudi). Some piece of detector had been
seen along that a couple of representation of the ATLAS
event model.

CONCLUSIONS

Panoramix is regularly released and used and had al-
ready given services (for the XML detector description de-
bugging and the reconstruction debugging). Even if not
yet an overflow, views appear in meetings and workshops
and some are very very nice. Engineering choices are done
(let us say up to the startup). But the overall architecture
will permit to migrate parts if needed. More work around
the release building and distribution are needed if the three
common user laptops are targeted (Linux, Windows, Mac).
At the engineering level, efforts will be put now on the fi-
nal (!) integration of statistical tools to work on DaVinci
: OpenPAW for sure, hippodraw probably, ROOT without
conviction. Rendez vous at next CHEP for the status of all
that.

REFERENCES

[1] http://www.lal.in2p3.fr/Panoramix.

[2] http://www.lal.in2p3.fr/OpenScientist.

[3] http://www.coin3d.org

[4] OpenInventor Mentor and Toolmaker. Josie Wernecke Addi-
son Wesley.

[5] http://lhcb-reconstruction.web.cern.ch/lhcb-
reconstruction/Panoramix/Running Panoramix.htm


