
National Energy Research
Scientific Computing Center
(NERSC)
Reflection-Based Python-C++ Bindings

Wim T.L.P. Lavrijsen
NERSC HENPC, LBNL
CHEP 2004, Interlaken, Switzerland - 27/09/04

Outline

• Motivation and Introduction
– Scripting languages
– Python-C++ interoperation

• Technology Overview
– Different game-plans
– Available products

• PyLCGDict, PyROOT
– Overview and status
– Outlook

The Case for Scripting

• Typically, scripting languages are:
– Simple, high-level, dynamically typed
– Designed for “gluing” existing components
– Interactive, interpreted
– Missing steps in write/build/nap/run/debug

• Improved productivity
– Reduced learning curve
– More effective re-use of components
– Shorter development cycle

The Case for Python

• Simple, elegant, easy to learn
– Based on ABC, a teaching language
– Tutorials available online (www.python.org)

• Many standard and 3rd party modules
– 2nd most popular in use, most for bindings

• Used for scientific programming
– Open source, freely available
– Extensions for high performance and

distributed parallel code (www.scipy.org)

A Python Session

$~> python2.2
>>> import math
>>> math.sin(0.5 * math.pi)
1.0
>>> from urllib import urlopen
>>> page = urlopen(“http://cern.ch”)
>>> for line in page.readlines():
... print line,
...
<!DOCTYPE HTML PUBLIC "-//W3C//DTD H..
[.. etc ..]
>>> ^D
$~>

Python-C++ Interoperation

• Access C++ code from Python
– Other languages from C++ through Python

• Need Python bindings to C++ code
– Hand-written (C-API) or generated
– Requires taking care of:

• Object, parameter conversions
• Memory management
• C++ function overloading
• C++ templates

Python as Glue

7

GUI
Python Interpreter

mathmath

shell
GaudiPython

DatabaseEDG API

GUI

Very rich set of
Python standard
modules

Several GUI
toolkits

XML

Very rich set
specialized
generic modules

Gaudi
Framework

PyROOT

Root
Classes

PVSS

JPE

Java
Classes

LHC modules

G
at

ew
ay

s
to

 o
th

er

fr
am

ew
or

ks

P. Mato

Static Wrapping

• Wrappers created from interface file
– Several steps required (can be automated)
– Control creation with a selection file

• Wrappers are written out as code
– Compiled into an extension module

• Missing classes replaced by stubs
– Internal bookkeeping for class sharing

• Types are registered to allow conversions
– Function returns follow bound signature

• But allow explicit (dynamic) casts by the user

Static Wrapping

Wrapper Engine

Python Interpreter

Interface DefinitionInterface Selection

Wrapper Code

Extension Module

Compiler Suite

Implementation

My Python Script

Dynamic Wrapping

• Wrappers created from reflection info
– If dictionary available: minimal user effort

• If not, very similar effort as static wrapping
– No/Little control over creation mechanism

• Python classes, built-up in memory
– Loaded and created on-demand

• Missing classes can be automatically loaded
– “Bookkeeping” is in Python classes itself

• Conversions are derived from reflection info
– Function returns follow actual type

Dynamic Wrapping

Python Interpreter

Dictionary

Wrapper Engine

Implementation

My Python Script

Available Products

• SWIG
– Original tool, 13 target languages, static

• Boost.Python
– Large feature set, C-API replacement, static

• PyLCGDict
– LCGDict based, dynamic

• PyROOT
– ROOT/CINT based, two-way, dynamic

• CABLE, CXX, SIP, etc.

Trade-offs

• Prefer dynamic wrapping
– Lots of dictionaries already available

• POOL persistency, ROOT analysis code
– No casting, auto-loading

• Boost.Python is rather slow
– C++ exception thrown on failed overload
– Spurious object copying

• SWIG is often cumbersome to use
– Generated code doesn't always compile

SEAL

• Shared Environment for Applications at LHC
• Provide LHC core and services libs

– Foundation class libs (system, math, etc.)
– Framework svcs (plugins, scripting)
– Improve coherency of

LCG applications
• Strategy of pluggable

components

PyLCGDict

• Based on LCGDict
– Dictionaries from POOL persistency svcs
– Atlas/LHCb framework interactivity

• Job configuration
• Basis for Athena main program in python
• Access to Transient Store and user classes

• Part of SEAL
– Released with SEAL_1_4_0 and later
– To be superseded by PyReflex

• Goal: maximize physicist ease-of-use

PyROOT

• Bridge between Python and ROOT
– Dictionaries available from CINT
– Access ROOT objects from Python and VV.
– Interchange Python / CINT sessions
– Works with ROOT memory handling
– Class level “pythonization”

• eg. for histogram fitting, ROOT arrays

• Originally in SEAL, now part of ROOT
– Released with ROOT v4.00/04 and later

Resources

• Online documentation
– www.python.org/doc
– www.swig.org/doc.html
– www.boost.org/python/doc
– cern.ch/seal/snapshot/workbook/PyLCGDict2-howto.html
– cern.ch/wlav/pyroot

• Installations
– /afs/cern.ch/sw/lcg/app/releases/SEAL
– /afs/cern.ch/sw/root

Outlook

• Interactive access to Gaudi/Athena
– Work from Python interpreter or CINT
– Useful for debugging user code
– New ways of doing analysis:

• Have Athena services available in analysis

• LCGDict and CINT dict to integrate
– New API: Reflex, part of SEAL
– Keep PyReflex general
– Add specific ROOT features for PyROOT

Conclusions

• Physicists' toolkit beefed up w/ Python
– Adds advantages of scripting languages
– Easy connection to many existing libraries

• Developed tools to provide ease of use
– PyLCGDict, PyROOT: generic, dynamic
– Automatic binding for user classes
– Provide binding for standard physics libs

