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The Case for Scripting

• Typically, scripting languages are:
– Simple, high-level, dynamically typed
– Designed for “gluing” existing components
– Interactive, interpreted
– Missing steps in write/build/nap/run/debug

• Improved productivity
– Reduced learning curve
– More effective re-use of components
– Shorter development cycle



The Case for Python

• Simple, elegant, easy to learn
– Based on ABC, a teaching language
– Tutorials available online (www.python.org)

• Many standard and 3rd party modules
– 2nd most popular in use, most for bindings

• Used for scientific programming
– Open source, freely available
– Extensions for high performance and 

distributed parallel code (www.scipy.org)



A Python Session

$~> python2.2
>>> import math
>>> math.sin( 0.5 * math.pi )
1.0
>>> from urllib import urlopen
>>> page = urlopen( “http://cern.ch” )
>>> for line in page.readlines():
...    print line,
...
<!DOCTYPE HTML PUBLIC "-//W3C//DTD H.. 
[ .. etc .. ]
>>> ^D
$~>



Python-C++ Interoperation

• Access C++ code from Python
– Other languages from C++ through Python

• Need Python bindings to C++ code
– Hand-written (C-API) or generated
– Requires taking care of:

• Object, parameter conversions
• Memory management
• C++ function overloading
• C++ templates



Python as Glue
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Static Wrapping

• Wrappers created from interface file
– Several steps required (can be automated)
– Control creation with a selection file

• Wrappers are written out as code
– Compiled into an extension module

• Missing classes replaced by stubs
– Internal bookkeeping for class sharing

• Types are registered to allow conversions
– Function returns follow bound signature

• But allow explicit (dynamic) casts by the user



Static Wrapping
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Dynamic Wrapping

• Wrappers created from reflection info
– If dictionary available: minimal user effort

• If not, very similar effort as static wrapping
– No/Little control over creation mechanism

• Python classes, built-up in memory
– Loaded and created on-demand

• Missing classes can be automatically loaded
– “Bookkeeping” is in Python classes itself

• Conversions are derived from reflection info
– Function returns follow actual type



Dynamic Wrapping
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Available Products

• SWIG
– Original tool, 13 target languages, static

• Boost.Python
– Large feature set, C-API replacement, static

• PyLCGDict
– LCGDict based, dynamic

• PyROOT
– ROOT/CINT based, two-way, dynamic

• CABLE, CXX, SIP, etc.



Trade-offs

• Prefer dynamic wrapping
– Lots of dictionaries already available

• POOL persistency, ROOT analysis code
– No casting, auto-loading

• Boost.Python is rather slow
– C++ exception thrown on failed overload
– Spurious object copying

• SWIG is often cumbersome to use
– Generated code doesn't always compile



SEAL

• Shared Environment for Applications at LHC
• Provide LHC core and services libs

– Foundation class libs (system, math, etc.)
– Framework svcs (plugins, scripting)
– Improve coherency of

LCG applications
• Strategy of pluggable

components



PyLCGDict

• Based on LCGDict
– Dictionaries from POOL persistency svcs
– Atlas/LHCb framework interactivity

• Job configuration
• Basis for Athena main program in python
• Access to Transient Store and user classes

• Part of SEAL
– Released with SEAL_1_4_0 and later
– To be superseded by PyReflex

• Goal: maximize physicist ease-of-use



PyROOT

• Bridge between Python and ROOT
– Dictionaries available from CINT
– Access ROOT objects from Python and VV.
– Interchange Python / CINT sessions
– Works with ROOT memory handling
– Class  level “pythonization”

• eg. for histogram fitting, ROOT arrays

• Originally in SEAL, now part of ROOT
– Released with ROOT v4.00/04 and later



Resources

• Online documentation
– www.python.org/doc
– www.swig.org/doc.html
– www.boost.org/python/doc
– cern.ch/seal/snapshot/workbook/PyLCGDict2-howto.html
– cern.ch/wlav/pyroot

• Installations
– /afs/cern.ch/sw/lcg/app/releases/SEAL
– /afs/cern.ch/sw/root



Outlook

• Interactive access to Gaudi/Athena
– Work from Python interpreter or CINT
– Useful for debugging user code
– New ways of doing analysis:

• Have Athena services available in analysis

• LCGDict and CINT dict to integrate
– New API: Reflex, part of SEAL
– Keep PyReflex general
– Add specific ROOT features for PyROOT



Conclusions

• Physicists' toolkit beefed up w/ Python
– Adds advantages of scripting languages
– Easy connection to many existing libraries

• Developed tools to provide ease of use
– PyLCGDict, PyROOT: generic, dynamic
– Automatic binding for user classes
– Provide binding for standard physics libs


