
REFLECTION-BASED PYTHON-C++ BINDINGS

J. Generowicz,
�

P. Mato, CERN, Geneva, Switzerland
W. T. L. P. Lavrijsen, M. Marino, LBNL, CA 94530, USA

Abstract

Python is a flexible, powerful, high-level language with
excellent interactive and introspective capabilities and a
very clean syntax. As such, it can be a very effective tool
for driving physics analysis.

Python is designed to be extensible in low-level C-like
languages, and its use as a scientific steering language
has become quite widespread. To this end, existing and
custom-written C or C++ libraries are bound to the Python
environment as so-called extension modules. A number of
tools for easing the process of creating such bindings exist,
such as SWIG and BOOST.PYTHON. Yet, the process still
requires a considerable amount of effort and expertise.

The C++ language has few built-in introspective capa-
bilities, but tools such as LCGDICT and CINT add this by
providing so-called dictionaries: libraries that contain in-
formation about the names, entry points, argument types,
etc. of other libraries. The reflection information from
these dictionaries can be used for the creation of bindings
and so the process can be fully automated, as dictionaries
are already provided for many end-user libraries for other
purposes, such as object persistency.

PYLCGDICT is a Python extension module that uses
LCG dictionaries, as PYROOT uses CINT reflection in-
formation, to allow Python users to access C++ libraries
with essentially no preparation on the users’ behalf. In ad-
dition, and in a similar way, PYROOT gives ROOT users
access to Python libraries.

INTRODUCTION
Programming languages that are dynamically typed and

compiled on-the-fly, often referred to as “scripting lan-
guages,” are well known to make software developers more
productive than when they develop in system level lan-
guages. This is because of the dramatically reduced time
spent in waiting for the computer to build and link newly
developed code, and because dynamic typing reduces clut-
ter in the syntax: these languages are more expressive and
high-level, making them easier to learn and program with.

Dynamic languages are often designed to interoperate
smoothly with other languages, thus allowing the program-
mer to re-use existing libraries. In doing so, the exist-
ing codes become well separated components of the new
program and the dynamic language becomes a “glue” that
binds them together by providing cross-calls and data trans-

�

Funded by: the Particle Physics and Astronomy Research Council,
Swindon, UK.

fers. The Python programming language [2] in particular,
is widely used for this role.

Python is simple, elegant, easy to learn, and is one of the
most popular dynamic languages. It is open source, freely
available, and comes with an interactive interpreter as well
as a wide range of standard modules. Python has many ap-
plications in scientific programming, including extensions
for high performance and distributed parallel code [3], and
is already in use today in many high energy physics (HEP)
experiments.

The large, existing, C/C++ code base in HEP can be
made available to Python users, by providing so-called
language bindings: wrapper code that translates back and
forth between C/C++ and Python (see Fig. 1). This paper
describes some of the existing tools for creating such bind-
ings, as well as two tools, PYLCGDICT and PYROOT,
that were developed specifically with the physicist end-user
in mind.

TECHNOLOGY OVERVIEW
It is possible to write Python-C++ bindings by hand,

based on the Python C-API. But even for medium-sized
projects, that quickly becomes cumbersome and unmain-
tainable, therefore several tools are available that automate
the generation of bindings. These tools fall, broadly speak-
ing, in two categories: static and dynamic wrappers. The
differences between the two approaches, which are impor-
tant to highlight because they seep through to the end-user
level, are described below. It must be kept in mind, though,
that the actual implementations of tools do not strictly fall
into one category or the other.

In either approach, the wrapper needs to resolve the fol-
lowing issues:

� Object and parameter conversions. Function cross-
calls require that the call arguments and the return val-
ues are converted from one language into the other.

� Missing or incomplete types. Function signatures
and class definitions may include pointers to types that
are only declared, not defined.

� Memory management. With C++, memory is man-
aged by hand or by custom developed strategies,
whereas Python uses reference counted objects and a
cyclic garbage collector.

� C++ function overloading. Python does not need
overloading, because of the dynamic typing, but it is
required to select the correct C++ function from a set
of overloaded ones, when calling into a C++ library.



Figure 1: An overview of how the Python interpreter, with the appropriate bindings where necessary, is used as “glue”
between HEP libraries, thus giving the Python user access to all existing functionality.

� C++ templates. A naming convention is needed to
distinguish between templates, especially since addi-
tional instantiations can be loaded at run-time.

An issue like memory management is handled in more
or less the same way by all tools: the end-user can set
policies, apply explicit memory management also on the
Python side, or let the tool make educated guesses. Im-
plementations for overloading and templates tend to differ
only in details that the end-user will hardly ever see.

Static Wrapping

A generic overview of the process of statically wrapping
a library is shown in Fig. 2 (A). An interface definition file
(in the case of C++: a header file) is parsed by a wrap-
per engine that generates the appropriate wrapper code. An
interface selection file can be used to steer the engine: it de-
termines which parts of the interface to use, which parts to
skip, etc. The generated wrapper code is typically in a low-
level system language such as C, and it can subsequently be
compiled and linked with the implementation that is being
wrapped. The end result is an extension module that can be
used by the Python interpreter just like any other module.

In a Python session, multiple extension modules can be
loaded, and the types from one module must be available
to, and usable in, the other modules. In particular, it should
be transparent to load types that were left undefined in one
module, which usually means that a stub was generated for
them, from another module. To this end, static wrappers
commonly keep a conversion repository, e.g. to be able to
integrally replace stubs. These conversion repositories dif-
fer from tool to tool, therefore it is not always straightfor-
ward to combine extension modules from different tools.

Note that return values that are of type pointer, or ref-
erence, to base class will typically1 be represented on the
Python side as references to that base class, as that is the
only information available at code generation time. The
Python end-user can explicitly cast the return value, as
needed, just as it would have been possible in C++.

Dynamic Wrapping

Dictionaries are libraries that contain reflection informa-
tion such as names, entry points, argument types, etc., of
other libraries. If this information is available, bindings to a
library can be dynamically created, as shown in Fig. 2 (B).

In the dynamic approach, Python classes and functions
are loaded and created on-demand. Upon use, or upon any
other explicit request, class names are looked up in the dic-
tionary and all type information is retrieved to construct a
Python class in memory. This may result in the loading of
additional dictionaries, as needed.

There are no stubs: all classes are actual Python classes,
although some of them may not be complete if type in-
formation is missing. Thus, there is no need of a sepa-
rate bookkeeping of classes and there are potentially fewer
problems when mixing with bindings generated by other
tools.

The availability of reflection information allows the
binding to always use the concrete types for the return val-
ues of functions. Thus, if the C++ signature uses type
pointer, or reference, to base class, the Python user will
see the derived class that is actually returned and no further
casting is required.

1It is technically possible to downcast to the actual derived class using
C++ run-time type information (RTTI). In practice, however, this is not
commonly done.



Figure 2: Two conceptually different ways of wrapping existing libraries: static (A), which works from the source code;
and dynamic (B), which utilizes reflection information.

Tools
The problem of generating Python-C++ bindings has

been around for some time, and several mature tools are
available:

� SWIG. This is probably the original wrapper tool.
C++ is only one of its inputs and it has, including
Python, 13 target languages (see [4]). SWIG is a
static wrapper and the individual steps required to pro-
duce an extension module are often automated with
MAKE by the end-user. That, however, makes it less
than trivial to use.

� BOOST.PYTHON. Specifically developed for generat-
ing Python-C++ bindings, BOOST.PYTHON is a static
wrapper and boasts a large feature set (see [5]). It is,
however, primarily an improvement on the flat Python
C-API for bindings. Automated generation of bind-
ings is provided by PYSTE, which is now part of
BOOST.PYTHON. Note, however, that tracing errors
in the generated code is often complicated, because
of the heavy reliance on C++ template metaprogram-
ming.

� PYLCGDICT. Part of the SEAL project [6], PY-
LCGDICT is a dynamic wrapper that uses LCG dic-
tionaries (LCGDICT) to generate bindings. LCG-
DICT was developed in the SEAL project, primarily
to provide C++ introspection for the POOL persis-
tency framework.

� PYROOT. Originally part of SEAL, now part of the
ROOT project [7], PYROOT [1] is a dynamic wrap-
per that uses dictionaries in the CINT format [8] to
generate bindings. PYROOT also allows the CINT
interpreter to call into Python, and to mix sessions of
the two interpreters.

� There are various other projects (CABLE, CXX,
SIP, etc.), but their development has either been dis-
continued or they have been written for very specific
applications only.

From an end-user’s standpoint, dynamic wrapping is
preferred. Especially in HEP, where dictionaries are often

already available for other uses (e.g. persistency and anal-
ysis code), making the dynamic approach much simpler.
This is the reason for the existence of PYLCGDICT and
PYROOT: to make it as easy as possible on the physicist
end-user to get access to her code and data objects from the
Python interpreter.

PYLCGDICT AND PYROOT

The LCG dictionary (LCGDICT) is used to persistify,
among others, end-user data objects with the POOL persis-
tency framework [9]. These dictionaries are subsequently
used by PYLCGDICT to automatically provide bindings
for these objects, without any further work being needed
from the end-user.

With scripts made available by the REFLECTION-
BUILDER package, also part of SEAL, it is straightfor-
ward to create bindings not only for data objects, but also
for code. This is done for the GAUDI/ATHENA software
framework, where these scripts and PYLCGDICT are used
to provide interactivity. This interactive use allows for new
ways of doing physics analysis, and gives the developer
more diagnostic tools.

Similarly, the widely used ROOT class library, and ap-
plications as well as analysis codes based on it, provides
many dictionaries in the CINT format that are used by
PYROOT to automatically provide bindings. PYROOT
works bidirectionally: when loaded into the CINT inter-
preter, it allows access to Python and the interchanging of
the two interpreters. In addition, PYROOT has specific
features for it to work easily with ROOT: it hooks into
the ROOT memory handler to pick up notifications of the
deletion of objects, provides Python sequence protocols for
ROOT arrays and lists, allows Python functions to be plot-
ted and used to fit histograms, etc.

There is a new reflection API that the LCGDICT and
ROOT developers have agreed on: REFLEX. The core of
PYLCGDICT can be used to create a new package: PYRE-
FLEX, which can then also form the basis of PYROOT.



CONCLUSIONS AND OUTLOOK
The physicist’s toolkit has been beefed up with PYLCG-

DICT and PYROOT which make it possible to easily use
the Python interpreter together with existing C/C++ HEP
libraries and with end-user objects that often have associ-
ated dictionaries. In doing so, the rich and varied set of
standard and third-party Python modules, in addition to any
other existing C++ libraries with Python bindings, has been
added to the physicist’s toolkit as well.

The dictionaries used by LCG and ROOT are to con-
verge on a common API: REFLEX. Once this has been ac-
complished, the core code of PYLCGDICT and PYROOT
can be shared: PYREFLEX, with small add-ons for specific
uses such as PYROOT currently provides for ROOT.

REFERENCES
[1] http://cern.ch/wlav/pyroot.

[2] G. van Rossum and F. L. Drake, Jr. (eds.), “Python Ref-
erence Manual”, Release 2.3.4, PythonLabs, May 2004.
http://www.python.org.

[3] http://www.scipy.org.

[4] http://www.swig.org.

[5] http://www.boost.org/libs/python.

[6] J. Generowicz, et al., “SEAL: Common Core Libraries
and Services for LHC Applications”, physics/0306033, June
2003. http://cern.ch/seal.

[7] R. Brun, F. Rademakers, S. Panacek, “ROOT, an object ori-
ented data analysis framework”, 23rd CERN School of Com-
puting, Conference Proceedings. http://root.cern.ch.

[8] http://root.cern.ch/root/Cint.html.

[9] D. Düllmann, “The LCG POOL Project, General Overview
and Project Structure”, CHEP 2003, Conference Proceedings.
http://lcgapp.cern.ch/project/persist/.


