
MONTE CARLO EVENT GENERATION IN A MULTILANGUAGE,
MULTIPLATFORM ENVIRONMENT

N. A. Graf, A. Johnson, SLAC, Menlo Park, CA 94025, USA

Abstract

We discuss techniques used to access legacy event gen-
erators from modern simulation environments. Coding to a
standard interface and use of shared object libraries enables
runtime selection of generators, and allows for extension of
the suite of available generators without having to rewrite
core code.

PROBLEM STATEMENT

Physics and detector simulations for the International
Linear Collider are being conducted by an amorphous and
heterogeneous group of high energy physicists, working
mostly part-time on this project. Simulation software needs
to be lightweight, yet flexible and performant over a wide
variety of development platforms. The HEP community
has mostly completed its transition to modern, object-
oriented programming languages such as C++ and Java,
e.g. GEANT4, ROOT and JAS. One exception is event
generators; most event generators producing unweighted
events with stable, final state particles appropriate for de-
tector response simulations are either written in FORTRAN
or depend on FORTRAN-based libraries for fragmentation,
e.g PYTHIA, HERWIG, ISAJET, or pandora-pythia and
whizard [1]. Interfacing to these legacy programs presents
an additional level of complexity to software development
and distribution.

INTERFACING LEGACY EVENT
GENERATORS

Most generators can target the HEPEVT FORTRAN
common block. The stdhep [2] package provides a binary
persistence binding, but stdhep is not well supported on
all platforms, and somewhat tricky to implement for ca-
sual users. One solution would be to simply interface to
the event generators through their persistent output, with
a standalone FORTRAN program producing and writing
events to disk using the stdhep file format. The end user
application would then just read this file and process its
contents. However, disk storage can be prohibitive in many
large-statistics fast-simulation physics analyses. End users
would also be directly exposed to the idiosyncrasies of each
package, i.e. no standard main programs or runtime in-
put commands exist. The alternative presented here is to
abstract out a common event generation interface and pro-
vide standard implementations for some of the more popu-
lar event generation packages.

A Pure Java Solution

Providing a simulation and reconstruction framework
written in Java has proven to be well matched to the ILC
developers environment. It is Object Oriented and easy to
use, with many support libraries and is platform indepen-
dent. However, no full event generators are written in Java.
We do, however have a pure Java diagnostic event gener-
ator for generating simple events composed of final state
particles. This has proven to be very helpful in determin-
ing the intrinsic detector response (e.g. energy, momentum
and position resolution, and geometrical acceptances) for
single particles.

A Multilanguage Solution

The solution presented here uses Java to provide a con-
sistent platform-independent interface. We use the Java
Native Interface (JNI) [3] to call FORTRAN event gener-
ators via C++. The use of shared-object (.so) or dynamic
link (.dll) libraries enables late binding and provides run-
time flexibility.

Encapsulation

The philosophy adopted in this approach is to encap-
sulate the basic event generation behavior and to push as
much responsibility as possible onto the native event gen-
erators (note that this is different from the approach taken in
[4]). Runtime control is achieved through plain-text ASCII
files which are parsed by FORTRAN routines just as they
would be in an all-FORTRAN environment. These com-
municate with the COMMON blocks in the event genera-
tor code to set parameters, reusing each package’s existing
parsing code. The end user can select physics processes,
beamstrahlung, decay channels, etc. at runtime simply by
editing a text file. The user can either generate events on
the fly within a fast-simulation and analysis environment,
or write out events in stdhep format. The Java program
calls a single C++ class through JNI with a minimal inter-
face, viz.

pub l i c n a t i v e vo id i n i t i a l i z e () ;

pub l i c n a t i v e vo id nex tEven t (
i n t [] nev ,
i n t [] i s t h e p , i n t [] idhep ,
i n t [] jmohep , i n t [] jdahep ,
double [] phep , double [] vhep) ;

pub l i c n a t i v e vo id f i n i s h () ;

The C++ code communicates with FORTRAN only
through the HEPEVT common block, which is mapped on
to the hepevtcommon struct as follows.

ex te rn ”C” vo id i n i t i a l i z e () ;
ex te rn ”C” vo id n e x t e v e n t () ;
ex te rn ”C” vo id f i n i s h () ;

t ypede f s t r u c t / / HEPEVT common b l o c k
{
/ / e v e n t number
i n t nevhep ;

/ / number o f e n t r i e s
i n t nhep ;

/ / s t a t u s code
i n t i s t h e p [4 0 0 0] ;

/ / PDG p a r t i c l e i d
i n t i dhep [4 0 0 0] ;

/ / p o s i t i o n o f 1 s t , 2nd mother
i n t jmohep [4 0 0 0] [2] ;

/ / p o s i t i o n o f 1 s t , l a s t daugh te r
i n t j dahep [4 0 0 0] [2] ;

/ / 4−momentum , mass
double phep [4 0 0 0] [5] ;

/ / v e r t e x p o s i t i o n and t ime
double vhep [4 0 0 0] [4] ;
} hepevtcommon ;

The FORTRAN event generation code simply fills the
HEPEVT common block for each event. This code, of
course, has to be written by someone with expertise in
the generator, but then can be used by anyone. Control
is through theinitialize() call, and is generator-specific.

Example Program

import hep . a n a l y s i s . Even tGene ra to r ;
import hep . a n a l y s i s . EventData ;
import hep . a n a l y s i s . EndOfDataExcept ion ;
import hep . i o . s t d h e p . a d a p t e r . S tdhepAdap te r ;

/∗∗
∗ L C D i n t e r f a c e t o s t d h e p e v e n t g e n e r a t o r s .
∗@ a u t h o r N o r m a n G r a f
∗/

p u b l i c c l a s s S t d h e p E v e n t G e n e r a t o r e x t e n d s E v e n t G e n e r a t o r
{

S t d h e p A d a p t e r s t d a d a p t e r ;
p r i v a t e E v t G e n e v e n t g e n ;

/∗∗
∗ C o n s t r u c t o r l oa d s n a t i v e l i b r a r y
∗/
p u b l i c S t d h e p E v e n t G e n e r a t o r (S t r i n g g e n e r a t o r N a m e)
{

s t d a d a p t e r = n e w S t d h e p A d a p t e r () ;
System . l o a d L i b r a r y (genera torName+” ev tgen ”) ;

e v e n t g e n = n e w E v t G e n () ;
/ / Note t h a t t h e c o n s t r u c t o r c a l l s i n i t i a l i z e ()

}

/∗∗
∗ G e n e r a t e a s i n g l e e v e n t
∗/
p u b l i c E v e n t D a t a g e n e r a t e E v e n t () t h r o w s E n d O f D a t a E x c e p t i o n
{

e v e n t g e n . nex tEven t () ;
r e t u r n s t d a d a p t e r . c o n v e r t (e v e n t g e n . genStdhepEvent ()) ;

}

/∗∗
∗ F i n i s h up
∗/
p u b l i c v o i d a f t e r L a s t E v e n t ()
{

e v e n t g e n . f i n i s h () ;
}

}

Runtime Control

This solution interacts natively with the event genera-
tors, thereby reusing existing parsing code where avail-
able. For instance, ISAJET has a well-defined set of con-
trol cards which completely specify the event generation
characteristics and a well-established mechanism for read-
ing these at runtime, which we have respected. The input
file is exactly the same as for the FORTRAN job, allowing
users to reuse their existing command files. PYTHIA has a
command-parsing capability which allows many of the run-
time switches to be set by simply passing string commands
to the PYGIVE subroutine. HERWIG has neither a well-
defined set of runtime controls, nor a native mechanism for
dynamically setting event characteristics, so in this case we
abstracted out a reasonable set of parameters and allow the
user to modify these as needed. Other event generators are
handled similarly, and clearly needs input from an expert
in the generator. The interaction between Java and C++ is
only through theinitialize() method. All .dll or .so libraries
respect the same interface, so the user can dynamically se-
lect and load packages at runtime, even those which were
not available at link time, viz.

>java EvtGen libToLoad

The catalog of available generators can be expanded in
the future, without users having to modify any of their ex-
isting code. Simply distribute a new .so or .dll file and its
corresponding run control file.

SUMMARY

The use of Java as the user interface and JNI to con-
nect to legacy FORTRAN event generation code has proven
to be a useful solution to the problem of accessing legacy
event generation code written in FORTRAN from simula-
tion software written in Java and run on multiple platforms.
The definition of a minimal interface allows event genera-
tors to be selected at runtime without code modification and
enables smooth future upgrades.

REFERENCES

[1] http://www.thep.lu.se/ torbjorn/Pythia.html
http://hepwww.rl.ac.uk/theory/seymour/herwig
http://www.phy.bnl.gov/ isajet
http://www.slac.stanford.edu/ mpeskin/LC/pandora.html
http://www-ttp.physik.uni-karlsruhe.de/whizard

[2] http://www-cpd.fnal.gov/psm/stdhep/

[3] http://java.sun.com/j2se/1.5.0/docs/guide/jni/

[4] http://www.slac.stanford.edu/econf/C0303241/proc/papers/
THJT005.PDF

