
FULL EVENT RECONSTRUCTION IN JAVA

N. A. Graf, SLAC, Menlo Park, CA 94025, USA
for the LCD software development team

Abstract

We describe a Java toolkit for full event reconstruction
and analysis. The toolkit is currently being used for de-
tector design and physics analysis for a futuree+e− lin-
ear collider. The components are fully modular and are
available for tasks from digitization of tracking detector
signals through to cluster finding, pattern recognition, fit-
ting, jetfinding, and analysis. We discuss the architecture
as well as the implementation for several candidate detec-
tor designs.

INTRODUCTION

The International Linear Collider

Detectors are currently being designed to fully ex-
ploit the physics discovery potential ofe+e− collisions at√

s=1TeV by performing precision measurements of com-
plex final states. This will require exceptional momen-
tum resolution,excellent vertexing capabilities, and her-
metic Particle Flow calorimetry.

LCD Mission Statement

The Linear Collider Detector (LCD) Simulation and
Reconstruction group is tasked to provide full simula-
tion capabilities for the International Linear Collider (ILC)
physics program, including physics simulations, detector
designs, machine-detector interface and background stud-
ies. Due to the long leadtime of this project, we need flex-
ibility for new detector geometries and technologies and
innovative reconstruction algorithms. Limited resources
demand efficient solutions and focused effort. The goal
is to develop a common simulation environment used in
ILC studies which allows sharing of detector designs, re-
construction algorithms, and code. The system should be
flexible, powerful, yet simple to install, maintain and use.
The metric of performance is the ease with which a physi-
cist having an idea can implement and test its effect!

Why Java?

Java is a pure Object Oriented (OO) language which is
simpler to learn and use than C++. The language design
emphasizes ease-of-use over performance (e.g. garbage
collector takes care of freeing unused objects, freeing de-
velopers from worrying about memory management). It is
a new language, with no historical baggage and very pow-
erful standard libraries. A large number of open-source
libraries including libraries for scientific computing are

available. It is also platform independent making it very
suitable for the Grid environment. Compile it once and
it just runs everywhere there is a Virtual Machine (Linux,
Windows, Mac OSX, Solaris,). Physicists can concentrate
on writing clean OO code to perform analysis tasks. Fur-
thermore, the runtime performance of Java code is close to
that of C++, in real life maybe 20-30% overhead typical.

“Particle Flow” Reconstruction

The desired precision and resolution of the ILC physics
measurements require a new detector paradigm, intimately
connected with the event reconstruction. We are aiming
for a very tight loop connecting detector design to simula-
tions, reconstruction and analysis, with the results feeding
back into the design. The basic idea behind the “Particle
Flow” algorithm is to uniquely reconstruct each particle in
the event with high precision and efficiency. One is able
to measure the momenta of charged tracks in the central
tracker with superb resolution. One then attempts to as-
sociate the corresponding energy deposition from this par-
ticle in the calorimeter and remove those cells from fur-
ther analysis. Photons are measured with high efficiency in
finely segmented electromagnetic calorimeters with good
energy resolution. Any remaining neutral hadrons are mea-
sured with reasonable resolution in hadron calorimeters.

σ2
Ejet = σ2

Echarged+σ2
Ephotons+σ2

Eneut.had.+σ2
confusion

The confusion term, arising from the incorrect assign-
ment of calorimeter energy deposition to charged and neu-
tral hadrons, is the hardest term and cannot be correctly
simulated with fast 4-vector smearing. Its understanding
requires detailed detector designs coupled with realistic
calorimeter shower simulation and a fullab initio recon-
struction.

RECONSTRUCTION OVERVIEW

The reconstruction software runs either standalone or in-
side Java Analysis Studio (JAS3). A fast, 4-vector smear-
ing Monte Carlo provides a best you can do target towards
which the full reconstruction aims. One can overlay arbi-
trary combinations of beam and physics background at the
detector hit level, as well as adding salt and pepper noise
hits, or simulating inefficiencies by dropping hits. The
Geant4 full simulation program writes out the full Monte
Carlo hit information; detector digitization is deferred un-
til the reconstruction phase. This allows detector readout
schemes to be varied (within reason) to study the effects of

CCD pixel size, depletion depth, silicon microstrip pitch,
TPC readout electronics, etc. Digitizing the hit informa-
tion provides more realistic hits by simulating the effects
of electronic noise and crosstalk, hit merging, ghost hits
arising from strip pairing, and cluster dependent position
measurement uncertainties. The full reconstruction pack-
age featuresab initio track finding and fitting, calorimeter
clustering, individual particle reconstruction (e.g. cluster-
track association). The analysis suite includes a pure Java
Neural Net implementation available for training and use,
physics tools such as topological vertex finding, jet find-
ing and jet flavor tagging. Analysis tools feature an LCD-
specific WIRED event display, as well as a full suite of ntu-
ple and histogram manipulation and fitting functions. The
code and documentation (including examples and tutorials)
can be downloaded from the hep.lcd homepage [1].

Event Loop

Utility classes are provided to read in events in various
file formats (e.g. sio, lcio, root, ascii and Java native seri-
alization). Reconstruction algorithms are implemented as
Drivers with well-define callback hooks, e.g.:

add (P r o c e s s o r p) ;
b e f o r e F i r s t E v e n t () ;
s e t D e t e c t o r (D e t e c t o r d e t) ;
p r o c e s s E v e n t (EventData e v e n t) ;
a f t e r L a s t E v e n t () ;

S
eq

u
en

tial R
eco

rd
 L

o
o
p

L
C

E
v
en

t

G4 Detector Simulation Input
SimTrackerHits, SimCalorimeterHits, MCParticles

Detector Digitization/ Hit Finding
CCD Pixels, Si strips*, TPC waveform*

Tracker hit clustering, uncertainty assignment

Track Finding/Fitting
Standalone 3D trackfinding (e.g. TPC, CCD)

Track merging, fitting

Calorimeter Clustering
“Nearest” Neighbor, MST*, Fuzzy*

Cluster Particle ID (e.g. , , h±, h0)

Reconstructed Particle
Track-Cluster association,

Jet-Finding, Flavor Tagging
ZVTop vertexing, NN Flavor Tagging (b, c, uds)*

Reconstruction Output
LCIO (Tracks, Clusters, ReconstructedParticles…)

AIDA (tuples, histograms)

Bckgnd

Events
+

Figure 1: The Event Reconstruction Flow.

Drivers implement the Processor interface, so they can
be nested (i.e. Reconstructors can call other Reconstruc-
tors). The Event contains some predefined collection
hooks,

e v e n t . g e t C a l o r i m e t e r H i t s () ;
e v e n t . g e t T r a c k e r H i t s () ;

However, because of the intrinsic OO nature of Java, arbi-
trary objects can also be added to and retrieved from the
Event

ev e n t . pu t (’ ’ myStuf f ’ ’ , myStuf f)

This allows users to rapidly prototype reconstruction al-
gorithms without having to worry about the details of the
event model. Successful features are then promoted to the
formal event interface as part of the release procedure.

Detector Hit Digitization

As mentioned previously, the Geant4 full simulation
package writes out the full Monte Carlo detector hit in-
formation. Since this would be a prohibitively large (and
mostly useless) amount of information for each element of
a particle shower in a calorimeter, the calorimeter hit (Sim-
CalorimeterHit) information is quantized into cells in the
Geant4 program. That is, only the total amount of energy
deposited (and time of deposition) by each primary parti-
cle in a calorimeter cell is recorded. This, however, is done
at a finer segmentation than is expected to be available in
the real detector. Studies of the impact of various readout
options such as segmentation, number of readout bits and
thresholds can be undertaken by ganging cells and digitiz-
ing at the reconstruction stage. Hits in the tracking detec-
tors (SimTrackerHit) preserve the full MC information for
each hit: position, time, dE/dx, MC parentage, etc. The hits
are then digitized at the reconstruction level, allowing the
effects of strip pitch, pixel size, charge sharing, electronic
noise, etc. to be studied.

CCD Digitization

As an example of a tracking detector hit digitization, the
vertex detector hits from simulated events are converted int
CCD pixels. The package finds charge deposited in each
pixel, adds electronics noise and digitizes the resulting sig-
nal. Clustering software then associates contiguous pixels
into clusters, splitting if necessary. The coordinates of the
found cluster centroids are used to replace TrackerHits in
the events. Further event processing (track finding, fitting,
and so on) proceeds as before. The user can set CCD para-
meters (like thickness, depleted layer depth, epitaxial layer
thickness and so on), electronics parameters (noise, ADC
conversion scale, pixel and cluster thresholds), and algo-
rithm processing parameters (like cluster center calculation
method).

Track Finding and Fitting

The released reconstruction software features full pattern
recognition in 3D detectors. For 2D outer trackers, such as
silicon microstrip trackers, tracks found in the vertex de-
tector can be extrapolated outwards. The current software
is specifically tuned for two strawmen detectors, but work
is ongoing to generalize the pattern recognition software.
The default track fitter is a weight matrix implementation

to account for material effects, and single detector or com-
bined fits are supported. This is sufficient for many pre-
liminary studies, since the proposed tracking detectors are
very lightweight and the magnetic fields quite uniform, but
to extract the maximum tracking resolution and make the
fitting more flexible, a Kalman filter algorithm is being de-
veloped.

Calorimeter Clustering

Associating energy depositions in the calorimeters to
particle showers is at the heart of the ”particle flow” al-
gorithm, putting extra emphasis on calorimeter cluster-
ing. A generic cluster interface has been defined, and sev-
eral clustering algorithms are currently implemented. A
MC cheater is available to associate cells based on the
known MC track depositing the energy to provide a tar-
get towards which to aim. A Nearest-Neighbor algorithm,
with user-definable neighborhood domains for association
is also available. A fixed-radius cone algorithm has shown
promise as a fast, efficient clustering algorithm for find-
ing electromagnetic showers. To assist developers, a qual-
ity assurance package working only on the Cluster inter-
face has been written to provide efficiency and fake rates.
Clustering refinements include combining clusters found in
different calorimeters (e.g. hadronic and electromagnetic)
and across detector boundaries (e.g. barrel and endcap).
The fine granularity of the proposed calorimeters allows
the particle identity of clusters to be identified with reason-
able confidence based on neural net analyses of the cluster
characteristics such as shape and energy moments.

Reconstructed Particle

Particle Flow algorithms are being developed with min-
imal coupling to specific detector designs. The photon-
finding and muon reconstruction packages are fairly ma-
ture. Although several approaches are being investigated,
the emphasis for charged hadron reconstruction has been
placed on a track-following algorithm. Tracks found in
the central trackers are extrapolated into the calorimeters
and energy deposited in the readout cells is added to the
track until a threshold is reached, either in the matching
of energy to momentum of the track, or a distance from-
the-track metric is exceeded. The high granularity of the
calorimeter readout design allows the traces of minimum
ionizing particles (either muons or charged hadrons before
they shower) to be reconstructed with high efficiency and
reasonable precision.

Systematic investigations of the dijet invariant mass res-
olution as a function of the central magnetic field, the
calorimeter inner radius and barrel-endcap aspect ratio,
calorimeter transverse readout cell area, longitudinal seg-
mentation, material and readout technology are being un-
dertaken, employing a Particle Flow algorithm.

FUTURE DEVELOPMENTS

As part of an ongoing program to truly internationalize
the ILC physics and detector simulation effort, a simple
and lightweight persistence format was developed, called
LCIO [3]. The event data model for the simulation and re-
construction software is being rewritten to target this data
model and also to incorporate new features of the Java lan-
guage which have become available since hep.lcd was first
being developed. Experience gained in the use of the ex-
isting packages is also being used to refactor much of the
software. The improved code will be released as a collec-
tion of packages in the org.lcsim namespace [2].

CONCLUSIONS

Designing detectors for the International Linear Collider
is an area of active development with many choices, re-
quiring close coupling of design, simulation, and recon-
struction. Ease of use and speed of development are essen-
tial for physicists conducting ILC studies part-time and in
a heterogeneous environment. A fairly complete suite of
simulation tools written in Java exists and is being success-
fully used for these studies.

ACKNOWLEDGEMENTS

I would like to acknowledge and thank all the LCD de-
velopers who have contributed to this project, in particular
Gary Bower, Ron Cassell, Tony Johnson, Saurav Pathak,
Mike Ronan, Nick Sinev, and Wolfgang Walkowiak.

REFERENCES

[1] http://www-sldnt.slac.stanford.edu/jas/Documentation/lcd/

[2] http://lcsim.org

[3] LCIO - A persistency framework and data model for the
Linear Collider, Frank Gaedeet al., these Proceedings, and
http://lcio.desy.de

