
AIDA, JAIDA AND AIDAJNI: DATA ANALYSIS USING INTERFACES  

 
M. Donszelmann, SLAC, Stanford, CA 94309, USA  

T. Johnson, SLAC, Stanford, CA 94309, USA  
V. Serbo, SLAC, Stanford, CA 94309, USA  
M. Turri, SLAC, Stanford, CA 94309, USA 

 
Abstract 

AIDA, Abstract Interfaces for Data Analysis [1], is a set 
of abstract interfaces for data analysis components: 
Histograms, Tuples, Functions, Fitter, Plotter and other 
typical analysis categories. The interfaces are currently 
defined in Java, C++ and Python and implementations 
exist in the form of libraries and tools using C++ 
(Anaphe/Lizard [2], OpenScientist [3]), Java (JAIDA [4]) 
and Python (PAIDA [5]). 

This paper will describe AIDA in more details and will 
focus on Java implementation of AIDA, which is part of 
FreeHEP Java library [4]. FreeHEP library also include 
many other useful utilities; this paper will describe two of 
them. AIDAJNI – library that enables C++ program to use 
Java implementation of AIDA, and AIDA Tag Library – 
set of HTML-like tags that allows user to easily include 
live plots into the web pages. 
 

AIDA 
AIDA [1] has been created cooperatively by a group of 

developers working on high-energy physics data analysis 
tools. The goal of the AIDA project is to provide user with 
a powerful set of interfaces which can be used regardless 
of which analysis tool they are using. The idea is to define 
only a “protocol” for analysis objects, no internal details. 
AIDA defines the behaviour; analysis tool provides the 
implementation (see Figure 1).  

 
 

A

I

D

A

User code 
(e.g. GEANT4)

Analysis tool 1

Analysis tool 2

A

I

D

A

User code 
(e.g. GEANT4)

Analysis tool 1Analysis tool 1

Analysis tool 2Analysis tool 2

 
 

Figure 1: Usage of AIDA. 

 
AIDA also defines XML format for representation and 

storage of analysis objects.  
When using AIDA, users only have to learn one set of 

interfaces, but use any available AIDA-compliant tool.  
   All AIDA interfaces are defined in a language-

independent format, and later the C++, Java, and Python 
interfaces are generated automatically from this one 

source using the AID (Abstract Interface Definition [6]) 
tool. This setup makes it easy to add new language and to 
maintain consistent set of interfaces across different 
languages. 

Any AIDA program begins with Factories. Instead of 
creating objects directly using "new" one uses factories. 
There is one "master" factory, IAnalysisFactory from 
which other factories are obtained. The IAnalysisFactory 
allows you to obtain factories for creating Trees 
(ITreeFactory), Histograms, Clouds and Profile 
Histograms (IHistogramFactory), Tuples (ITupleFactory), 
etc. Please have a look at the piece of code below: 

 

 
Using Factories makes user code longer by several 

lines, but it provides a guarantee that AIDA program will 
work with any implementation, since it does not explicitly 
rely on any concrete implementation-specific classes.  

The AIDA ITree interface provides two capabilities: the 
ability to group analysis objects such as Histograms, 
Clouds, Tuples, etc. into hierarchical directories (or 
folders), and the ability to save and restore sets of analysis 
objects into files or databases.  

AIDA supports 1D, 2D, and 3D Histograms, Profile 
Histograms, and Clouds. Clouds are unbinned collections 
of data. They are used for scatter plots or dynamically 
rebinnable Histograms. A Cloud can be automatically 
converted to a Histogram when the number of entries 
exceeds a given threshold, or can be manually converted 
by the user. 

Other AIDA interfaces deal with creation and 
manipulation of Tuples, DataPointSets, Functions, and 
Plotting of analysis objects. 

The AIDA IFitter interface provides the user the 
possibility to fit Functions to any AIDA data storage 
object. Binned fits can be performed on Histograms, 
Profile Histograms and DataPointSets, while unbinned 
fits can be performed on Clouds and Tuples. Simple fits 

 
IAnalysisFactory af = IAnalysisFactory.create();  
ITreeFactory tf = af.createTreeFactory(); 
ITree tree = tf.create(); 
IHistogramFactory hf = af.createHistogramFactory(tree); 
       
IHistogram1D h = hf.createHistogram1D("test",50,0,5); 
…. 



can be performed directly on the data storage objects 
while the IFitData interface is to be used for a greater 
control over the data, in particular its ranges and the 
connection to the variables a Function. Through the 
IFitter it is also possible to change the underlying 
optimization engine as well as the fit method used. 

More information about AIDA, including the full list of 
interfaces and complete Users Guide can be found on the 
AIDA home page [1]. 

The current stable version of AIDA, implemented in 
C++, Java, and Python is 3.2.1. There are ongoing efforts 
to improve existing interfaces, as well as prepare the next 
major upgrade (AIDA 4). 

 

JAIDA 
JAIDA is the full implementation of AIDA in Java. It is 

part of FreeHEP Java library [4], and is used internally by 
JAS3 (Java Analysis Studio [7]) as its analysis core. It can 
also be used independently for either batch or interactive 
processing, or for web applications to access data, make 
plots and simple data analysis through a browser. 

Some of the JAIDA features are the ability to open 
ASCII text, AIDA XML, ROOT, and HBOOK data files 
and the support of an extendable set of fit methods (chi-
square, least squares, binned/unbinned likelihood, etc.) to 
be matched with an extendable set of optimizers including 
Minuit and Uncmin. 

Also JAIDA provides full support for AIDA plotting as 
well as ability to save plots in a variety of high quality 
graphics formats including: PDF, EPS, SVG, SWF, PNG, 
GIF, JPG, etc. Live JAIDA plots can be embedded in 
other Java GUIs or be used in servlets for web-based 
applications. 

JAIDA is ideal for batch analysis and jobs that don’t 
require GUI functionality. For interactive analysis it is 
better to use JAS3 – a general purpose, open-source, 
interactive data analysis tool. JAS3 uses JAIDA internally 
for analysis, but adds GUI interactivity. It can be easily 
extended by writing custom modules. JAS3 also includes 
support for scripting, currently Pnuts and Python. 

The current version of JAIDA is 3.2.3, implementing 
AIDA 3.2.1. 

 
 

AIDAJNI 
AIDAJNI is the glue code between C++ and Java that 

allows any C++ code to access a Java implementation of 
the AIDA interfaces. For example AIDAJNI is used with 
Geant4 to access JAIDA (see Figure 2). 

 
 

User 
Application 
(C++)

User 
Application 
(C++)

AIDAJNI 
Layer

AIDAJNI 
Layer

JAIDA 
(Java)

JAIDA 
(Java)

User 
Application 
(C++)

User 
Application 
(C++)

AIDAJNI 
Layer

AIDAJNI 
Layer

JAIDA 
(Java)

JAIDA 
(Java)

 
 

Figure 2: Usage of AIDAJNI. 

 
AIDAJNI is part of FreeHEP Java library [4], but can 

be downloaded as a separate, system-specific module. 
When using AIDAJNI, before compiling C++ program 

users need to: 
• Install JAIDA and AIDAJNI  
• Define JAIDA_HOME and AIDAJNI_HOME 

environment variables 
• Run JAIDA and AIDAJNI setup scripts (included 

in the distribution) 
Detailed step-by-step instructions how to use AIDAJNI 

are included in release notes [8] and also in the Exercise 5 
of Geant4 Tutorial CD at SLAC [9]. 

The current version of AIDAJNI is 3.2.2, implementing 
AIDA 3.2.1. 
 

AIDA TAG LIBRARY 
Based on AIDA and JAIDA, the tag library AIDATLD 

(AIDA Tag Library [10]) has been developed. It provides 
a very easy way to include live plots into Java Server 
Pages (.jsp) files. AIDATLD is designed to work in a 
container supporting JSP 2.0 or greater, such as Tomcat 
5.0.*. It consists of a set of AIDA-based, HTML-like tags: 
<aida:tree>, <aida:plotter>, <aida:style>, etc. Such tag 
structure makes it easy for users that are familiar with 
AIDA interfaces to read, understand, and create jsp pages. 

AIDATLD can be especially useful when it is needed to 
quickly make data and plots accessible to collaborators. 

Figure 3 shows example of AIDATLD page, as 
rendered by Internet Explorer. 

 
 



 
 

Figure 3: Example of AIDATLD page. 

 
Here is example of  jsp  page  code that illustrates the use of  
AIDATLD tags: 
 

 
<%@taglib prefix="aida" uri="http://java.freehep.org/jsp/aida" %>  
<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>  
 
 <html>  
     <head><title>Single plot of a histogram accessed via rootd</title></head>  
 <body>  
      <c:set var="rootDataURI" value="root://rh92.slac.stanford.edu/demo.root" />  
      <c:set var="histoPath" value="/h110" />  
      <aida:plotter>  
  <aida:region>  
       <aida:plot dataSourceURI="${rootDataURI}" plotObjectPath="${histoPath}" />  
  </aida:region>  
      </aida:plotter>  
 </body>  
</html> 

 



 
AIDATLD documentation, examples, and 

demonstrations are available at [10]. 
     

CONCLUSION 
AIDA provides rich, easy to learn and to use set of 

interfaces for data analysis. Ongoing efforts to improve 
and extend AIDA interfaces are based on user input. 
There is a bug tracking system in place [10], please post 
any bug reports, problems, requests for new features 
there. Also you are welcome to take part in the discussion 
forum [11]. 

Several implementations of AIDA are currently 
available in C++, Java, and Python. They all share the 
same AIDA XML format for representation and storage of 
analysis objects. So that Tuples, Histograms, etc. saved in 
this (possibly compressed) XML format can be shared 
between different AIDA implementations. 

There is a bridge between the C++ and Java worlds, 
AIDAJNI, which is a glue layer that allows using Java 
implementation of AIDA from C++ program. 

Java implementation of AIDA, JAIDA, and interactive 
analysis tool, JAS3, provide convenient way to do 
interactive and batch analysis using AIDA interfaces. 

AIDA Tag Library and JAIDA provide an easy way to 
include live plots into HTML pages. 

All products above use AIDA interfaces, which does 
not require user to learn any new analysis systems.  

 

REFERENCES  
[1] http://aida.freehep.org. 
[2] http://cern.ch/pi. 
[3] http://www.lal.in2p3.fr/OpenScientist. 
[4] http://java.freehep.org. 
[5] http://paida.sourceforge.net. 
[6] http://java.freehep.org/aid. 
[7] http://jas.freehep.org/jas3. 
[8] http://java.freehep.org/aidajni/ReleaseNotes-

3.2.2.html. 
[9] http://geant4.slac.stanford.edu/g4cd. 
[10] http://aidatld.freehep.org. 
[11] http://bugs.freehep.org. 
[12] http://forum.freehep.org. 
 


