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Abstract

The access to the magnetic field has a large impact on
both CPU performance and accuracy of simulation, recon-
struction and analysis software.

An approach to the magnetic field access based on a vol-
ume geometry is described. The volumes are constructed in
such a way that their boundaries correspond to field discon-
tinuities, which are due to changes in magnetic permeabil-
ity of the materials. The field in each volume is continuous.

The value of the field at a given point of a volume is
obtained by interpolation from a regular grid of values re-
sulting from a TOSCA calculation or, when it is available,
from a parameterization.

To allow global access to the magnetic field, a volume
finding algorithm that exploits explicitly the layout and the
symmetries of the detector is used.

The main clients of the magnetic field, which are the
simulation (GEANT) and the propagation of track parame-
ters and errors in the reconstruction, can be made aware of
the magnetic field volumes by connecting the per-volume
magnetic field providers to the corresponding volume in
the respective geometries. In this way the global volume
search is by-passed and the access to the field is sped up
significantly.

INTRODUCTION

The Compact Muon Solenoid (CMS) [1] is based on a
large superconducting solenoid, allowing the measurement
of the momentum of charged particles based on the bending
of their trajectories in the central region and within the iron
return yoke. The layout of the CMS detector is illustrated
in Fig. 1.

A precise knowledge of the magnetic field over the full
detector volume is essential for the proper simulation and
reconstruction of events. In a complex detector, the access
to the magnetic field is performed hundreds, even thou-
sands, of times during the simulation or the reconstruction
of a charged particle track; It can take a significant fraction
of the total execution time. Optimizing the magnetic field
access is therefore a worthwhile task.

The magnetic field is accessed dominantly from the
code solving the equations of motion of a charged particle,
which involves numerical solution of differential equations.
The numerical methods for this problem rely on the conti-

Figure 1: Layout of the CMS Detector.

nuity, and, for higher order methods, on the smoothness of
the magnetic field.

In a detector with a central solenoid and iron return
yoke like CMS the magnetic field has a physical discon-
tinuity at every iron/air border (more precisely, at every
magnetic/non-magnetic material border). In the case of
CMS, the iron of the return yoke is instrumented with
muon chambers; muon tracking, both for simulation and
reconstruction, requires “transport”, or “propagation”, of
the track parameters and errors traversing many volumes
of iron and non-magnetic materials.

A single global grid for parameterizing the CMS mag-
netic field with the accuracy required for simulation and
reconstruction would be prohibitively large. For example,
a single grid implementation in which the retrieved field
values are guaranteed not to be wrong by more than 100%
over distances of more than 1 mm would require of the or-
der of1011 nodes.

MAGNETIC GEOMETRY

To address these problems a description of the mag-
netic field based on a description of the magnetic and non-
magnetic volumes has been chosen. Volumes of identical
magnetic properties are grouped in a single volume if the
resulting shape can be described in a simple way. For ex-
ample, all volumes inside the solenoid are grouped in a sin-
gle cylinder: the materials used inside the solenoid are re-
quired to be non-magnetic. The “magnetic geometry” thus
contains the minimal number of volumes required to accu-



rately describe all iron/air boundaries, and the coil of the
magnet. In the case of CMS this amounts to 271 simple
(non-boolean) volumes for a 30 degrees slice of the detec-
tor.

In order to serve as a basis for a field map the mag-
netic geometry must cover the entire volume of interest (the
entire detector) without any holes, and preferably without
overlaps.

FIELD CALCULATIONS

The actual computation of the magnetic field of CMS
is performed using TOSCA [2]. The TOSCA geometry
corresponds exactly to the volume geometry used for field
access. In every volume a regular 3D grid is generated
corresponding to the shape of the volume [3] (e.g. reg-
ular in Cartesian coordinates for a box, and in cylindri-
cal coordinates for a cylinder). Near the iron-air interface
the boundary grid points of each volume are placed just
inside the volume, with a small tolerance (100 microns).
The number of points and the grid step size are optimized
for each volume to provide sufficient level of accuracy
with a minimal number of points. The current model has
822492 grid nodes. The magnetic field values (the Carte-
sian components of the field vector) are computed in the
post-processor OPERA-3d (an OPerating environment for
Electromagnetic Research and Analysis) [2] at each grid
node, and stored in a file. The file is converted to a com-
pact binary format optimized for fast reading. The current
model uses about 9 MB of data.

A color plot of the magnetic flux density in a section of
the CMS detector is shown in Fig. 2.

Figure 2: Magnetic flux density (Tesla) in the CMS hori-
zontal plane. The plots covers one quarter of the detector.

FIELD ACCESS DECOMPOSITION

Using this geometry, the problem of magnetic field
lookup at a given point in global coordinates is decomposed
in:

• the problem of finding the volume (in the magnetic
geometry) that contains the point;

• the computation of the field value in the volume;

• the transformation of coordinates between the global
and the volume reference frames. This is done with a
direct translation and rotation between the two frames.

VOLUME SEARCH

For a generic geometry, it is difficult to solve efficiently
the problem of finding the volume that contains a given
point. However, practical geometries have regularities that
can be exploited to organize the volumes in a hierarchical
structure. For example, the CMS barrel region can be or-
ganized in cylindrical layers, each one composed of sectors
consisting in several rods of adjacent volumes.

Once volumes are organized in such a structure, volume
finding is reduced to a simple binning problem for each
level of the hierarchy.

Even after dedicated optimization the average CPU time
required for volume finding is significant compared to the
time spent in the evaluation of the field within the vol-
ume. However, the actual access patterns of simulation
and reconstruction are very localized: the trajectory of a
charged particle is followed for many consecutive steps, re-
sulting in many field queries for the same volume. A simple
caching mechanism for the last accessed volume provides
about 98% hit rate for both the GEANT4 simulation and
the reconstruction of CMS events, substantially reducing
the CPU time spent in volume search.

FIELD INTERPOLATION

The simplest way to obtain a continuous magnetic field
given a regular grid of known values is linear interpola-
tion. In three dimensions the simplest tri-linear interpola-
tion uses the values at 8 corners of a grid “cube” which
contains the point at which the field is evaluated.

The 3D grid cell is really a cube only in the reference
frame where the grid step is constant along all three dimen-
sions; the transformations from/to this frame are non-linear
in the general case. In principle one could take this non-
linearity into account when computing the weight of the 8
values contributing to the interpolation to reflect correctly
the true distance from the point to the grid nodes; however,
the non-linearities are small at the scale of a single grid
cell, and there is no clear gain in in field quality if these ad-
ditional calculations are performing. Therefore the effect
of the grid non-linearity on the interpolated value has been
neglected.

Using higher order parameterizations in three dimen-
sions is impractical, since the number of required field val-
ues increases rapidly (27 for quadratic interpolation com-
pared to 8 for linear). To achieve a smoother field (in-
cluding field derivatives) field parameterization is a more
promising approach.

FIELD PARAMETERIZATION

The volume approach to the magnetic field access allows
the use of a different algorithm for the field computation



in different volumes instead of using a linear interpolation
everywhere.

The approximation of the field, as defined on the grid
nodes, by a parametric function has the advantages of:

• using much less memory (only a few parameters per
volume);

• being potentially faster (depending on the parametric
function);

• providing a higher degree of smoothness.

A high degree of smoothness is essential for the efficient
application of advanced numerical methods for solving the
equations of motion. For example, a4th order Runge-Kutta
method loses it’s4th order properties if applied to a field
which is smooth only to zeroth order (like the field resulting
from linear interpolation).

A full parameterization of the field in all volumes has not
yet been studied in detail, but the special case of the central
tracking volume, where most of the field accesses during
reconstruction occur, has been parameterized successfully.

Parameterization in the Central Tracking Volume
The applicability of the ideal solenoid formula in the CMS
Tracker volume has been studied. The parameters of the
formula are the field valueB0 at the origin, the lengthL and
the radiusa of the solenoid. These formulas forBz andBr
are expressed as infinite series in terms of the derivatives
B
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Notice that for a constantz the dependence inr is simply
polynomial for the two components. The on-axis formula
Bz(0, z) can be expressed in closed form as follows:

Bz(0, z) =
1
2
B0

√
1 + ā2 [f [(1− z̄)/ā] + f [(1 + z̄)/ā)]

wheref(x) = x/
√

1 + x2. The quantities̄z and ā are
defined as:̄z = 2z/L andā = 2a/L. The third component
Bφ is small in the Tracker volume and is neglected.

For a non-ideal solenoid, like the CMS coil, the con-
stantsa andL are considered as formal parameters which
are fitted so as to match the parameterized field as closely
as possible with the finite-element-calculated field map .

The parameterization works well, resulting in per mill
accuracy on all components of the field in the entire tracker
volume.

RELATION TO OTHER GEOMETRIES

The CMS detector simulation program currently uses
the magnetic field via the global reference frame: when

a field value is needed at some point, the point is con-
verted to global coordinates, the field is queried, and the
resulting field vector is converted back to local coordinates.
The magnetic geometry described above can be connected
volume-by-volume to the simulation geometry in order to
avoid the conversion from/to the global frame and to find
directly the magnetic field volume that contains a given
simulation volume.

The reconstruction geometry, which is much less de-
tailed than the simulation one, can be connected to the mag-
netic field geometry in a similar way.

Connecting the application geometries with the magnetic
geometry will allow to bypass the volume search and to
go directly to the interpolation/parameterization within the
magnetic volume.
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