Physics Validation of the LHC Software

- Software requirements and challenges from LHC environment, detectors/triggers and physics (physics aspects only, technical aspects not covered here)
- 2 Examples of software validation and performance from simulation, reconstruction, analysis
- 3 Where do we stand today with the (non-core) LHC Software?

The point of view of a physicist and end-user

Fabiola Gianotti (CERN) End-users today know about the WEB, database, ...

Fabiola Gianotti, CHEPO4, Intel

0

Main requirements and challenges of LHC software

Compared to previous machines: -- much more difficult environment

-- much more demanding triggers

-- much better detector performance

-- much more ambitious and broad physics goals

- Unprecedented particle energy range: ~ 0.1 GeV (ALICE) → few TeV (ATLAS, CMS)
 - → detector simulation, reconstruction, ...
- Unprecedented particle multiplicities :
 - -- pile-up at 10^{34} cm⁻² s⁻¹ \rightarrow ~20 pp collisions / bunch x-ing (every 25 ns) in ATLAS/CMS
 - -- high-E heavy-ion collisions → ~ 10000 charged particles per event in ALICE TPC
 - → pile-up simulation, pattern recognition,

• Unprecedented triggers \rightarrow data access, fast reconstruction, ...

	ATLAS, CMS pp, L=10 ³⁴	LHCb pp, L=2x10 ³²	ALICE central PbPb, L=10 ²⁷
Interaction rate	10 ⁹ Hz	10 ⁷ Hz	8 kHz
Input rate to HLT	~ 100 kHz	10 ⁶ Hz	< 1 kHz
Rate to storage	100-200 Hz	~ 200 Hz	~ 50 Hz
Event size	~ 1-2 MB	~ 100 kB	~ 25 MB

Software based

(latency: 1ms -1s)

Unprecedented detectors:

- -- large variety of technologies
- -- number of channels: >108 ATLAS/CMS
- -- excellent performance (resolutions, measurement accuracies, particles identification): 0.1%-1%
- → <u>simulation</u>, <u>detector description</u>, <u>calibration</u>, <u>reconstruction</u>, ...

Unprecedented physics goals:

- -- precise measurements (e.g. m_W , m_{top} , B-decays) with higher accuracies than before
- -- extract tiny new signals from huge backgrounds (e.g. 1 $H \rightarrow$ 4l event every ~ 10^{13} pp collisions) Note: S/B ratios typically \geq 100 worse at LHC than at the Tevatron for channels accessible to both
- -- explore the "unknown" up to the multi-TeV scale through huge number of topologies

- ⇒ Need precise/robust/redundant understanding of detector performance and physics (e.g. backgrounds to New Physics)
 - ⇒ -- many Monte Carlo generators
 - -- several levels of detector simulations full (Geant4, FLUKA), parametrized, fast
 - -- many reconstruction algorithms

→ software (framework!) modularity and flexibility

2 main "physics" requirements for the LHC software:

• Cope with these unprecedented conditions and challenges, i.e.:

do not become the limiting factor to trigger and data taking, detector performance and physics reach

2 In spite of complexity, be easy-to-use

Each one of the ~ 4000 LHC physicists (including people from remote/isolated countries, physicists who have built the detectors, software-old-fashioned senior physicists) should be able to <u>run the software</u>, <u>modify</u> part of it (reconstruction, ...), analyze the data, <u>extract physics results</u>

<u>Users want:</u>
Simplicity (simple interfaces)
Stability
Interactivity

Main component of LHC software: a simplified physics-oriented point of view

Here: a few examples from simulation, reconstruction, analysis, ...

Note: lot of experiment-common LCG software

→ good also for physics (robustness/reliability, easier cross-checks among experiments, etc.)

SIMULATION Simulation Reconstruction MC generators Pile-up Reconstructed data Simulated data Analysis (ESD, AOD, ...) Raw data 2007, 2015 Det. description Calibration/configuration Metadata data 2007, 2015 etc. etc.

<u>Trackers</u>: thin detector layers (e.g. 300 μ m Si sensors) \rightarrow need to <u>model individual</u> <u>microscopic collisions</u> down to \sim 10 eV/gas, \sim keV/Si for precise estimate of occupancy \rightarrow of detector performance, aging, efficiency of pattern recognition, ...

Muon Spectrometers: need to describe background hits from

- -- high-E μ : catastrophic E-losses in upstream calorimeters and shower punch-through
- -- radiation background in the cavern: \sim 1 MeV neutrons, 300-500 keV γ
- → impact on trigger rates, detector performance and aging, pattern recognition, ...

Required precision: ~ % in most cases

Calorimeters:

1000

- -- $e/\pi/\mu$ test-beam data available for E ~ 1-300 GeV
- -- "calibration" samples at LHC, e.g. Z (→ II) +jets, cover up to few hundreds GeV

Example: Are quarks really point-like?

3000

 E_{τ} (GeV)

2

X

A_{st}=20000 GeV

ATLAS

ATLAS

ATLAS

ATLAS

ATLAS

2000

Validate simulation over this range and use it to predict detector response at E ~ TeV (where New Physics is expected!)

If quarks are composite: new $qq \rightarrow qq$ interactions with strength ~1/ Λ^2 , Λ = scale of New Physics. \Rightarrow expect excess of high-p_T jets compared to SM The higher Λ the smaller the excess. LHC sensitivity up to Λ \approx 40 TeV

A hadron calorimeter non-linearity of 1.5 % at $E_{\rm jet}$ ~ 4 TeV, not reproduced by simulation, may fake a scale $\Lambda \approx 30$ TeV \Rightarrow inadequacy of simulation would limit LHC physics reach

To avoid this : simulation must reproduce e/π response ratio (which governs response non-linearity to jets) to few percent

After extensive comparisons with test-beam data, iterations with the GEANT4 team, lot of efforts on experiment and simulation sides:

close to few % goal accuracy

Huge numbers of physics processes, very low particle-tracking cuts, millions of volumes

→ robustness, CPU

Millions of events already fully-simulated in experiment Data Challenges

ALICE (G3): 15 hours for one central event (1 GHz Pentium III)

ATLAS, CMS (G4): ~ 20'-30' for one di-jet event with p_T (jet) ~ 1 TeV (1 GHz Pentium III)

RECONSTRUCTION

Example 1: CMS tracking at HLT (most demanding because no dedicated LVL2 in CMS)

- LVL1 (hardware) : $1 \text{ GHz} \rightarrow \sim 100 \text{ kHz}$
- HLT (software) : \sim 100 kHz \rightarrow \sim 100 Hz
- HLT: farm of ~ O(103) CPU
- → on average ~ 40 ms/evt available
- \rightarrow computing power: ~ 10⁶ SI95
- Offline framework and code used
- → robustness, reliability
- \rightarrow performance (CPU, memory) \rightarrow data loading on demand, regional reconstruction,

Ex.: Select b-jets at HLT (3rd fermion family!)?

- Fast (< 50 ms) determination of primary vertex from pixels only
- Regional reconstruction: tracks reconstructed inside a DR<0.25 cone around direction of LVL1 jet starting from pixel seeds
- Conditional reconstruction: tracking stopped when ~ 6-7 hits found on trajectory (don't need ultimate performance at HLT)

Readout Builder Network

1 GHz

~ 100 kHz

~ 100 Hz

Example 2: Reconstruction of E ~ TeV muons in the ATLAS spectrometer

(most demanding because of very high energy)

One of LHC goals: look for new resonances in the TeV region

Need:

- ϵ_{μ} (reconstruction) > 90% because • 10 evts expected for m (Z') ~ 5 TeV
- σ/p < 10% for E_{μ} ~ TeV to observe a "narrow" peak

$$E_{\mu}$$
~ 1 TeV \Rightarrow Δ~500 μm σ/p ~10% \Rightarrow δΔ~50 μm

Accurate description of upstream material (to ~ 5%) and E-losses -> detector description, simulation radioia Gianotti, CHEPU4, Interiaken, 30/9/2004

Alignment to < 30 µm

→ calibration, Condition DB

Pattern recognition in highly non-uniform (air-core) toroidal field \rightarrow access time to field-map $\leq 1 \mu s$

Catastrophic E-losses in calorimeters (probability increases with E) and cavern background → additional hits

Examples of achieved performance (full simulation)

Example 3: Tracking in ALICE (most demanding because of very-high particle multiplicity)

TPC redundancy (~160 points)

Special treatment of clusters with extended shapes to account for track overlaps

CPU: ~80 s for dN/dy ~6000 (3 GHz Pentium IV)

(see M. Ivanov's talk)

Fabiola Gianotti, CHEPO4, Interlaken, 30/9/2004

ANALYSIS

Analysis environment must provide:

- batch and interactive functionalities, transparent local
 ⇔ GRID transition
- access to all levels of data hierarchy (including Condition DB)
- access to event generation and simulation
- run reconstruction algorithms on raw and ESD data
- analysis at AOD and ntuple levels
- · data, algorithm and task browsing, event display, visualization, etc. etc.

Note: "interactive" means: [t (request) - t (answer)] ≈ sec

Example 2: ALICE ROOT-based analysis environment (see F. Carminati's talk)

In addition

Evolution: with Software at time T I should be able to handle data (real, simulated, calibrations) produced at T - N_{years} earlier ($N_{years} \le 15$) in a transparent way

- should allow everybody to do physics anywhere anytime
- should not slow down delivery of physics results
- must be transparent to the users
- user support must be available 24 hours x 365 days x 15 years
- · basic tools (e.g. easy-to-understand diagnostic about failed jobs,

Where do we stand today with the LHC (non-core) Software?

Conclusions

My 2 main messages (as an LHC physicist and end-user):

- · LHC has unprecedented and highly compelling physics goals
 - → Software/Computing should not limit the detector performance and LHC physics reach
- In spite of challenges and difficulties, the Software must be easy-to-use and stable

My 2 main worries today (as an LHC physicist and end-user):

- End-users not yet exposed to massive use/navigation of database and of GRID
 - \rightarrow what will happen when $O(10^3)$ physicists will simultaneously access these systems?
- Software and Computing Model developed for steady-state LHC operation (≥ 2009?)
 But: at the beginning they will be confronted with most atypical (and stressful) situations, for which a lot of flexibility will be needed:
 - -- staged, non-perfect, non-calibrated, non-aligned detectors with all sorts of problems
 - -- cosmic and beam-halo muons used to calibrate detectors during machine commissioning
 - -- machine backgrounds; higher-than-expected trigger rates
 - -- fast/frequent reprocessing of part of data (e.g. special calibration streams)
 - -- $O(10^3)$ physicists in panic-mode using and modifying the Software and accessing the database, GRID ...
 - ⇒ it is time for the Software/Computing to address the early phase of LHC operation, not to hinder the fast delivery of physics results (and a possible early discovery ...)

Many thanks to:

- D. Barberis, P. Bartalini, R. Brun, F. Carminati, L. Chevalier, G. Corti, A. Dell'Acqua,
- A. De Roeck, D. Froidevaux, R. Hawkings, V. Innocente, M. Ivanov, J.-F. Laporte, T. Lari,
- L. Mapelli, P. Mato, A. Nairz, W. Pokorski, D. Quarrie, F. Radermaker, A. Rimoldi,
- M. Stavrianakou, L. Silvestris, P. Sphicas, F. Teubert, S. Valuev, M. Virchaux

BACK-UP SLIDES

LHCb Analysis Applications

Conditions Data Read or Created by ORCA

- Data stored in condition database: few TB/year
- Update frequency of calibration/alignment constants: once/hour --> once/run depending on detector
- Slow-control data updated every few minutes

Note: need to update detector geometry with time automatically using latest constants

Reduced number of VELO stations (25 → 21) Fabiola Gianotti, CHEPO4, Intertaken, 30/9/2004

L1 trigger improvement

VELO

 $(X_0 \text{ is dominated by the RF foil})$ Fabiola Gianotti, CHEP04, Interlaken, 30/9/2004

Pere Mato's dream

Ideal Interactive Application

