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Physics Validation of the LHC SoftwarePhysics Validation of the LHC Software

Fabiola Gianotti (CERN)

  Software requirements and challenges  from LHC environment, detectors/triggers 
    and physics (physics aspects only, technical aspects not covered here)

 Examples of software validation and performance from simulation, reconstruction, 
     analysis
 Where do we stand today with  the  (non-core)  LHC Software ? 

The point of view of a  
physicist and end-user

End-users today know about the WEB, database, …
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H → eeµµ event in CMS at  1034 cm-2s-1

Main requirements and challenges of LHC softwareMain requirements and challenges of LHC software

Compared to previous machines :   -- much more difficult environment
                                                      -- much more demanding triggers
                                                      -- much better detector performance
                                                      -- much more ambitious and broad physics goals       goals          

• Unprecedented particle energy range : ~ 0.1 GeV (ALICE) → few TeV (ATLAS, CMS)
        → detector simulation, reconstruction, …
• Unprecedented particle multiplicities : 
         -- pile-up at 1034 cm-2 s-1 →  ~20 pp collisions / bunch x-ing (every 25 ns) in ATLAS/CMS
         -- high-E heavy-ion collisions →  ~ 10000 charged particles per event in ALICE TPC
       → pile-up simulation, pattern recognition, ….

ALICE

1% of all
tracks 
shown here

~ 1000 charged
particles
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••  Unprecedented triggers  → data access, fast reconstruction,  … 

••  Unprecedented detectors: 
  -- large variety of technologies
  -- number of channels : >108 ATLAS/CMS
  -- excellent performance 
      (resolutions, measurement accuracies, 
      particles identification) :  0.1%-1% 
→ simulation, detector description,  
    calibration, reconstruction,  … 

              Software 
       based 
 (latency: 1ms -1s)

                                                                    ATLAS, CMS        LHCb                ALICE
                                    pp,  L=1034      pp,  L=2x1032         central  PbPb, L=1027

Interaction rate             109 Hz              107  Hz               8 kHz
Input rate to HLT             ~ 100 kHz          106 Hz             < 1 kHz
Rate to storage            100-200 Hz       ~ 200 Hz           ~ 50 Hz
Event size                      ~ 1-2 MB         ~ 100 kB             ~ 25 MB 

Simulation of the LHCb
Vertex Detector (VELO)
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⇒⇒  Need precise/robust/redundant understanding
    of detector performance and physics 
    (e.g. backgrounds to New Physics)

••  Unprecedented  physics goals :
   -- precise measurements (e.g. mW, mtop, B-decays) 
       with higher accuracies than before
  -- extract tiny  new signals from huge backgrounds
      (e.g. 1 H→ 4l event every ~ 1013 pp collisions)
      Note : S/B ratios typically ≥ 100 worse at LHC
       than at the Tevatron for channels accessible to both
  -- explore the  “unknown” up to the multi-TeV scale
      through huge number of topologies

→ software (framework !)  modularity and flexibility

⇒ -- many Monte Carlo generators
    -- several levels of detector simulations
       full (Geant4, FLUKA), parametrized, fast
    -- many reconstruction algorithms 

One H → 4µ event like this

Every 1012 events like that
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22 main  main ““physicsphysics”” requirements for the LHC software : requirements for the LHC software :  

    Cope with these unprecedented conditions and challenges, i.e.:

do not become the limiting factor to trigger and data taking, 
detector performance and physics reach

    In spite of complexity,  be easy-to-use

Each one of the ~ 4000 LHC physicists  (including people from remote/isolated countries,
physicists who have built  the detectors,  software-old-fashioned senior physicists)  
should be able to run the software,  modify  part of it (reconstruction, …), 
analyze the data, extract physics results

Users want:
Simplicity (simple interfaces)
Stability
Interactivity
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Main component of LHC software: a simplified physics-oriented point of view

Here : a few examples from simulation, reconstruction, analysis, Here : a few examples from simulation, reconstruction, analysis, ……

Note : lot of experiment-common LCG software Note : lot of experiment-common LCG software 
→→ good also for physics (robustness/reliability, easier cross-checks among experiments, etc.)  good also for physics (robustness/reliability, easier cross-checks among experiments, etc.) 

MC generatorsMC generators
g
g q

q

SimulationSimulation

??AnalysisAnalysis

Pile-upPile-up

ReconstructionReconstruction

Simulated dataSimulated data
Reconstructed dataReconstructed data
(Event Summary Data, (Event Summary Data, 
Analysis Object Data, Analysis Object Data, ……))

MetadataMetadata

Raw dataRaw data  2007,   2007, ……. 2015 . 2015 

Calibration/configurationCalibration/configuration
datadata  2007,   2007, ……. 2015 . 2015 

DetDet. description. description

etc. etc.etc. etc.
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SIMULATION

MC generatorsMC generators
g
g q

q

SimulationSimulation

??AnalysisAnalysis

Pile-upPile-up

ReconstructionReconstruction

Simulated dataSimulated data Reconstructed dataReconstructed data
(ESD, AOD, (ESD, AOD, ……))

MetadataMetadata

Raw dataRaw data  2007,   2007, ……. 2015 . 2015 

Calibration/configurationCalibration/configuration
datadata  2007,   2007, ……. 2015 . 2015 

DetDet. description. description

etc. etc.etc. etc.



Fabiola Gianotti,  CHEP04, Interlaken, 30/9/2004 8

Trackers :  thin detector layers (e.g. 300 µm Si sensors) → need to model  individual 
microscopic collisions down to ~ 10 eV/gas, ~ keV/Si for precise estimate of occupancy  
→ of detector performance, aging,  efficiency of pattern recognition, ... 

Muon Muon SpectrometersSpectrometers: : need to describe background hits from
 -- high-E µ : catastrophic E-losses in upstream calorimeters and shower punch-through
 -- radiation background in the cavern: ~ 1 MeV neutrons, 300-500 keV  γ
→ impact on trigger rates, detector performance and aging, pattern recognition, ..

ATLAS ATLAS TilecalTilecal
test-beam datatest-beam data

300 300 GeVGeV  µµ

Required precision : ~ % in most casesRequired precision : ~ % in most cases

G4G4

ATLAS pixelATLAS pixel
test-beam datatest-beam data

180 180 GeV GeV   ππ



Fabiola Gianotti,  CHEP04, Interlaken, 30/9/2004 9

ATLASATLAS

Calorimeters :
--  e/π/µ  test-beam data  available for E ~ 1-300 GeV
-- “calibration”  samples at LHC, e.g. Z ( ll) +jets,
     cover up to few hundreds GeV

Validate simulation over this range
and use it to predict detector
response at  E ~ TeV 
(where New Physics is expected !)

Example :Example : Are quarks really point-like ?Are quarks really point-like ?  

If quarks are composite : new qq → qq interactions
with strength ~1/Λ2,  Λ ≡ scale of New Physics.
⇒ expect excess of high-pT jets compared to SM
The higher Λ the smaller the excess. 
LHC sensitivity up to Λ ≈ 40 TeV

A hadron calorimeter non-linearity of 1.5 % at Ejet ~ 4 TeV, not reproduced by simulation,
may fake a scale Λ ≈ 30 TeV ⇒ inadequacy of simulation would limit LHC physics reach

To avoid this : simulation must reproduce e/π response ratio (which governs response 
non-linearity to jets)  to  few percent 
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ATLAS ATLAS hadronic hadronic end-cap (HEC): end-cap (HEC): 
Cu/liquid-argonCu/liquid-argon

CMS HCAL:CMS HCAL:
Brass/Brass/ScintillatorScintillator

ATLAS ATLAS TilecalTilecal: : 
Fe/Fe/ScintillatorScintillator

Geant4 / data for e/π

close to
few % goal
accuracy

After extensive comparisons with test-beam data,  iterations with the GEANT4 team,
lot of efforts on experiment and simulation sides :
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ALICE : ~3 million volumes

CMS : ~ 1.2 million volumesATLAS : ~ 5 
million volumes

LHCb : ~ 18 million volumes

Huge numbers of physics
processes, very low 
particle-tracking  cuts,
millions of volumes
 → robustness, CPU 

  Millions of events already fully-simulated in experiment Data Challenges
  ALICE (G3) : 15 hours for one central event (1 GHz Pentium III)
  ATLAS, CMS (G4) : ~ 20’-30’ for one  di-jet event with pT (jet) ~ 1 TeV (1 GHz Pentium III) 
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RECONSTRUCTION

MC generatorsMC generators
g
g q

q

SimulationSimulation

??AnalysisAnalysis

Pile-upPile-up

ReconstructionReconstruction

Simulated dataSimulated data Reconstructed dataReconstructed data
(ESD, AOD, (ESD, AOD, ……))

MetadataMetadata

Raw dataRaw data  2007,   2007, ……. 2015 . 2015 

Calibration/configurationCalibration/configuration
datadata  2007,   2007, ……. 2015 . 2015 

DetDet. description. description

etc. etc.etc. etc.
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Ex.:  Select  b-jets at HLT   (3rd fermion family !)  ? 

b

b
• Fast (< 50 ms) determination of primary vertex from pixels only
• Regional reconstruction: tracks reconstructed inside a DR<0.25 
  cone around direction of LVL1 jet starting from pixel seeds
• Conditional reconstruction: tracking stopped when ~ 6-7 hits
  found on trajectory (don’t need ultimate performance at HLT)

1 GHz1 GHz

~ 100 kHz~ 100 kHz

~ 100 Hz~ 100 Hz

Example 1 : CMS tracking  at  HLT  (most demanding because  no dedicated LVL2 in CMS)

• LVL1 (hardware)  :  1 GHz → ~ 100 kHz
• HLT (software)   :  ~100 kHz → ~ 100 Hz
  

• HLT :  farm of ~ O(103) CPU
 → on average ~ 40 ms/evt available
 →  computing power : ~ 106 SI95 
• Offline framework and code used
 → robustness, reliability
 → performance (CPU, memory) → data loading on demand, regional reconstruction,  
                                                      conditional reconstruction



Fabiola Gianotti,  CHEP04, Interlaken, 30/9/2004 14

b-tagging efficiency vs 
background (uds-jets) efficiency 

CPU performance :
~ 300 ms/evt  if
 ≤ 7 hits/track
Extrapolation to
2007 : ~ 40 ms/evt

Note : this performance is
for perfect detector.
Next step: introduce 
 mis-alignments, etc.

Track efficiency and fakes 
vs  number of track hits

stop tracking
here at HLT

     CMS
full simulation

Low Low lumilumi
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Z ’ → µµ

Persint 3D event display

Example 2 : Reconstruction of E ~ TeV muons in the ATLAS spectrometer
(most demanding because of very high energy) 

One of LHC goals : look for new resonances in the One of LHC goals : look for new resonances in the TeV TeV regionregion  

Need : Need : 
••  εεµµ (reconstruction) > 90% (reconstruction) > 90%   because   because
     < 10  < 10 evts evts expected for m (Zexpected for m (Z’’) ~ 5 ) ~ 5 TeVTeV
••  σσ/p < 10% for E/p < 10% for Eµµ ~  ~ TeVTeV    to observeto observe
     a   a  ““narrownarrow”” peak peak

Δ
L~5m

B~0.5T

z
y

Δ
L~5m

B~0.5T

z
y

z
y

E µµ~ 1 TeV  ⇒ Δ~500 µm
σσ/p /p ~10%  ⇒ δΔ~50 µm

Alignment to < 30 µm 
→ calibration, Condition DB 

Accurate description of upstream material (to ~ 5%)
and  E-losses → detector description, simulation
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Pattern recognition in highly non-uniform (air-core) toroidal
field → access time to field-map ≤ 1 µs

Examples of achieved performance Examples of achieved performance (full simulation)(full simulation)

Catastrophic  E-losses in calorimeters
(probability increases with E) and 
cavern background → additional hits  

pT(GeV)
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1010

MuonboyMuonboy

0.20.2

0.00.0

    ATLAS
full simulation
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Example 3 : Tracking in  ALICE  (most demanding because of very-high particle multiplicity)

TPC redundancy (~160 points)
Special treatment of  clusters with extended shapes 
to account for track overlaps 

(see M. Ivanov’s talk)

TPC

ITS

CPU : ~ 80 s  for dN/dy ~ 6000 (3 GHz Pentium IV) 

p (GeV)

ITS + TPC

efficiency

fakes
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Analysis environment must provide:
• batch and interactive functionalities, transparent local ⇔ GRID transition
• access to all levels of data hierarchy (including Condition DB)
• access to event generation and simulation
• run reconstruction algorithms on raw and ESD data
• analysis at AOD and ntuple levels
• data, algorithm and task browsing, event display, visualization, …. etc. etc.  ….

Note: “ interactive” means:
[ t (request) - t (answer) ] ≈ sec

ANALYSIS

MC generatorsMC generators

g
g q

q

SimulationSimulation

??AnalysisAnalysis

Pile-upPile-up

ReconstructionReconstruction

Simulated dataSimulated data Reconstructed dataReconstructed data
(ESD, AOD, (ESD, AOD, ……))

MetadataMetadata

Raw dataRaw data  2007,   2007, ……. 2015 . 2015 

Calibration/configurationCalibration/configuration
datadata  2007,   2007, ……. 2015 . 2015 

DetDet. description. description

etc. etc.etc. etc.
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Example 1 : LHCb Python-based
 analysis environment   (see P.Mato’s talk)

Bender

Simul.
Gauss Recons

Brunel

Analysis
DaVinci

MCHits

Stripped DST

Digits DSTMCParts

GenParts

AOD

RawDataDetector
Description

Conditions
Database

Digit.
Boole
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Example 2 : ALICE ROOT-based analysis environment   (see F. Carminati’s talk)
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MC generatorsMC generators
g
g q

q

SimulationSimulation

??AnalysisAnalysis

Pile-upPile-up

ReconstructionReconstruction

Simulated dataSimulated data Reconstructed dataReconstructed data
(ESD, AOD, (ESD, AOD, ……))

MetadataMetadata

Raw dataRaw data  2007,   2007, ……. 2015 . 2015 

Calibration/configurationCalibration/configuration
datadata  2007,   2007, ……. 2015 . 2015 

DetDet. description. description

etc. etc.etc. etc.

In addition ….

Evolution:  with Software at time T  I should be able to handle data (real, 
simulated, calibrations) produced at  T - Nyears earlier (Nyears ≤ 15) in a transparent way
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MC generatorsMC generators
g
g q

q

SimulationSimulation

??AnalysisAnalysis

Pile-upPile-up

ReconstructionReconstruction

Simulated dataSimulated data Reconstructed dataReconstructed data
(ESD, AOD, (ESD, AOD, ……))

MetadataMetadata

Raw dataRaw data  2007,   2007, ……. 2015 . 2015 

Calibration/configurationCalibration/configuration
datadata  2007,   2007, ……. 2015 . 2015 

DetDet. description. description

etc. etc.etc. etc.

GRID:
• should allow everybody to do physics anywhere anytime
• should not slow down delivery of physics results
• must be transparent to the users
• user support must be available 24 hours x 365 days x 15 years
•  basic tools (e.g. easy-to-understand diagnostic about  failed jobs, 
   job monitoring histos, status of job and resources) should be available to the end-users
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My very rough  estimate … 
average over 4 experiments

2007

Path accomplished  (%)

Where do we stand today with the LHC  (non-core)  Software ?    

••  Realistic detectors (HV problems, dead channels, 
  mis-alignments, …) not yet implemented
• Calibration strategy :  
 -- where  (Event Filter, Tier0)  ? 
 -- which streams, which data size ? 
-- how often, how many reprocessings of part of raw data ? C PU ? 
  not fully developed in most cases
  (implications for EDM and Computing Model ?)
••  Software for experiment monitoring and for 
  commissioning with cosmic and beam-halo muons 
(the first real data to be collected …) not developed  yet 
 (reconstruction must cope with atypical events …)
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Conclusions

My 2 main messages  (as an  LHC physicist and end-user):

••  LHC has unprecedented and highly compelling physics goals
  → Software/Computing should not limit the detector performance and LHC physics reach 
• In spite of challenges and difficulties, the Software must be easy-to-use and stable

My My 2 main worries2 main worries  today   today   (as an LHC physicist and end-user):(as an LHC physicist and end-user):

••  End-users not yet exposed to massive use/navigation of database and of GRIDEnd-users not yet exposed to massive use/navigation of database and of GRID
    →→ what will happen when  O(10 what will happen when  O(1033) physicists will simultaneously access these systems ?) physicists will simultaneously access these systems ?
••  Software and Computing Model developed for steady-state LHC operationSoftware and Computing Model developed for steady-state LHC operation ( (≥≥ 2009 ?) 2009 ?)
    ButBut : at the beginning they will be confronted with most atypical (and stressful) situations,  : at the beginning they will be confronted with most atypical (and stressful) situations, 
    for which a lot of flexibility will be neededfor which a lot of flexibility will be needed: : 
   --    -- staged, non-perfectstaged, non-perfect, non-calibrated, non-aligned detectors with all sorts of problems, non-calibrated, non-aligned detectors with all sorts of problems
   -- cosmic and beam-halo    -- cosmic and beam-halo muons muons used to calibrate detectors during machine commissioningused to calibrate detectors during machine commissioning
   --    -- machine backgrounds ;   higher-than-expected trigger ratesmachine backgrounds ;   higher-than-expected trigger rates
   --    -- fast/frequent reprocessing of part of datafast/frequent reprocessing of part of data (e.g. special calibration streams) (e.g. special calibration streams)
   --    -- O(10O(1033) physicists) physicists  in panic-modein panic-mode  using and modifying the Software and accessing the using and modifying the Software and accessing the 
      database,  GRID       database,  GRID ……

⇒ it is time for the Software/Computing to address the early phase of LHC operation, 
    not to hinder the fast delivery of physics results (and a possible early discovery …) 
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BACK-UP SLIDESBACK-UP SLIDES
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LHCb Analysis ApplicationsLHCb Analysis Applications

DaVinciDaVinci

C++ Analysis ApplicationC++ Analysis Application

Gaudi FrameworkGaudi Framework

Services, Algorithms &Services, Algorithms &
Application ControlApplication Control

LoKiLoKi

Physics Analysis Physics Analysis ToolKitToolKit

LHCbLHCb
Event ModelEvent Model

BenderBender

Python Analysis ApplicationPython Analysis Application

GaudiPythonGaudiPython

BenderBender
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••  Data stored in condition  database : few TB/yearData stored in condition  database : few TB/year
••  Update frequency of calibration/alignment constants : once/hour --> once/run Update frequency of calibration/alignment constants : once/hour --> once/run 
                                                                                                                                                                          depending on detectordepending on detector
••  Slow-control data updated every few minutesSlow-control data updated every few minutes

Note : need to update detector geometry with time automatically using latest constantsNote : need to update detector geometry with time automatically using latest constants
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The The LHCb LHCb DetectorDetector

Reduced number of layers for M1 (4 → 2) 
Reduced number of tracking stations behind the magnet (4 → 3)

No tracking chambers in the magnet
No B field shielding plate

Full Si station
Reoptimized RICH-1 design

Reduced number of VELO stations (25 → 21)

Changes were made for
material reduction and
L1 trigger improvement
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VELOVELO

• 19 stations needed to cover the LHCb
acceptance ( > 3 stations / track)
+ 2 stations for robustness = 21 stations

Track loss for 25→21= 0.1%, 21→20 = 0.5%
(X0 is dominated by the RF foil)
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Pere Mato’s dream 


