
THE SAMGrid MONITORING SERVICE AND ITS INTEGRATION WITH MonALISA
A. Lyon, S. Veseli, P. Vokac, M. Zimmler (FNAL), M. Leslie (Oxford University)

 Monitoring SAMGrid

Hardware
Sensors

Data Handling
Servers

Collective Grid
Services

Monitoring
Server

Database
Service

Event
Database

Broadcast
Service

User Apps

Real-time
Monitoring

Apps

Monitoring
Apps

SAMGrid Monitoring Service

Legend
Information Flow

Information Producer

Information Consumer

MIS Components

Grid
Monitoring

Event Export
Service

Forwarding
Service

Peer
Monitoring

Server

SAMGrid consists of many services running many machines. Monitoring is essential
for the day to day operation of such a system, and plays an important role in testing
new SAMGrid components.
We have designed a system that can accept monitoring data from many sources,
store it for applications that monitor historical data, forward it to real time event
monitoring applications, and
export it to standard grid
monitoring services.

Monitoring information can be
pushed from clients to the
servers, or a server can pull
information from a client.

Customizable 'Event
Processors' then pass on,
store, or translate the events
as required.

SAMGrid
SAMGrid is a large scale distributed system to deliver petabyte scale
datasets for processing at the CDF and DØ experiments.

It does this by providing the following services in a single unified framework:

● Managing File Storage
● Files are housed on tape and cached on disks around the world

● Managing File Delivery
● Get files from tape or cache
● Provide location transparency
● Manage your local cache
● Use a variety of file transfer mechanisms

● Managing File Metadata
● The SAM database allows metadata based file retrieval
● User does not need to know a filename

● Providing Analysis Bookkeeping
● What files you ran over, with which application.

● Managing Jobs
● Choose an execution site, deliver job and data to it and store output

Monitoring Service Features
● Fast Multithreaded Design
● A slow event processor will not slow down other server functions

● Modular and Scalable Architecture
● Load balancing and forwarding allows load to be spread across several machines

● Small unobtrusive client side API
● Fast Python and C++ monitoring APIs will not impact performance of service being

monitored.
● Flexible Dictionary based Event Format
● Events contain arbitrary data in dictionary format (key/value pairs)

● Exports monitoring data to standard grid monitoring tools
● Monitoring information is passed on to MonALISA

● Database Event Logging
● Database stores all events for a configurable period of time

● CORBA based communication
● CORBA is the remote object access method used by the rest of the SAM system,
allowing monitoring to be added with almost no overhead

 Deployment Performance
Performance testing has revealed that the server works well even on a relatively slow
machine. In the graphs shown below, the server is under a constant load of 45
events per second, when a 70 event per second spike is received
The y-axis shows how many monitoring events remain unprocessed in the server's
various queues at any given time. In the graph on the left, the server is running on
one 800Mhz machine, and recovers from the spike in just over 80 seconds. In the
graph on the right, the server is running on two 2.8Ghz machines and recovers from
the spike in just 5 seconds. This demonstrates the scalability of the server's
architecture.

 Server Architecture
The server design aims to be efficient and easily extensible. When monitoring events
are received, they are simply inserted into a queue. This means the client can return
almost immediately. The queue manager thread then decodes each event and
passes it on to be processed. Processing is done using one of two mechanisms -
Message Handlers and Message Processors.

Message Processors run in their own thread, and have their own queue so that they
can work independently. Handlers are more lightweight, and are created as
messages are received. Handlers do not run in their own thread, but are run by
general purpose handler runner threads.

Forwarding
Server

MonALISA
Processor

Load
Balancer

Database
Processor

Database
Processor

Database

Clients

Processors are thus better
suited for common tasks,
such as database logging.

Handlers are used for less
common tasks, such as
executing server shutdown
commands.

0 10 20 30 40 50 60 70 80
0

50
100
150
200
250
300
350
400
450
500
550
600
650

Server Performance

 QueueManager
Database

Time (seconds)

Q
ue

ue
 S

iz
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

20

40

60

80

100

120

140

160

180

200

Performance, 2 Load Balanced Servers

DB1 QueueManager
DB1 Database
DB2 QueueManager
DB2 Database
Forwarder QueueM-
anager
Forwarder LoadBalancer

Time (s)

Q
ue

ue
 S

ize

The MIS server runs event processors selected
in its configuration file.

This, combined with the availability of load
balancing and forwarding processors allows
deployment across more than one machine. In
the diagram to the right, each of the blue
message processor boxes may be deployed on a
separate node.

The diagram to the right shows how a large
scale system might use several machines to
cope with the high load.

At present, we expect a single machine to be
sufficient for monitoring SAMGrid. The ability to
run a message forwarding server is however still
useful in situations where farm nodes do not
have Internet access. These farm clients could
use the farm's head node as a server, which
could forward information to the main monitoring
service

*

Message
ProcessorClient Receiver

Queue Manager

Handler Runner

Handler

Handler Queue

** *

*

*

Producer Puller

Handler Factory

1
1

1

1

1

1 1

1

1

1

