HOW TO BUILD AN EVENT STORE - THE NEW KANGA EVENT STORE
FOR BABAR

Matthias Steinke, Ruhr-Universitit Bochum, for the BaBar Computing Group

Abstract

In the past year, BaBar has shifted from using Objectiv-
ity to using ROOT I/O as the basis for our primary event
store. This shift required a total reworking of Kanga, our
ROOT-based data storage format. We took advantage of
this opportunity to ease the use of the data by supporting
multiple access modes that make use of many of the analy-
sis tools available in ROOT.

Specifically, our new event store supports: 1) the pre-
existing separated transient and persistent model, 2) a tran-
sient based load-on-demand model currently being devel-
oped, 3) direct access to persistent data classes in compiled
code, 4) fully interactive access to persistent data classes
from either the ROOT prompt and via interpreted macros.

We describe key features of Kanga including: 1) the sep-
aration and management of transient and persistent repre-
sentations of data, 2) the modular and extensible persistent
event design, 3) the way logical to physical file name trans-
lation is done efficiently and 4) BaBar specific extensions
to core ROOT classes that we used to preserve the end-user
”feel” of ROOT.

BABAR’S EVENT STORE HISTORY

For the first years of data taking BaBar used an event
store that was based on the Objectivity OODBMS. Basing
the event store on a database technology that was not de-
signed to fit the needs of an event store for BaBar was the
origin of a number of problems. Namely

e the concept of concurrent writers is not a parallel ap-
proach, which limited the performance of the event
reconstruction

e problems concerning with the lock servers such as
dead locks were quite common, though transactions
are not necessary for the readonly data access of
physics analysis jobs

e the system allowed just poor control of the event data
to file association. This made the navigation from
event data of low level of detail to the corresponding
data of higher detail practically impossible if the more
detailed data had to be staged back from tape. The
tape storage system had to touch too many files.

e the latency for new data becoming available for
physics analysis was too large because after the recon-
struction the data had to be transfered to the analysis
federation first

o the event size was too large because the data was not
optimal compressed and there was a too large over-

head from the OODBMS

e exporting data to other sites was difficult and resource
intensive

e Objectivity is commercial software, and their release
policy blocked the migration to new compiler and OS
versions.

Many users running physics analysis were not happy with
the overall performance of the system, and therefore a sec-
ond event store which was based on ROOT I/O was de-
veloped. This temporary solution allowed a significantly
faster access to the so called Micro data, the event data of
lowest level of detail. It was quite popular for analysis, but
it was not usable for reconstruction and MC production.

In 2003 BaBar implemented a new computing and anal-
ysis model, refered as Computing Model 2 [1] [2]. One key
component of the new computing model is a new, full fea-
tured, ROOT I/O based event store that should overcome
the disadvantages of the old solutions, and which in addi-
tion should support user customized data and an interactive
access to the event data from the ROOT prompt. Our im-
plementation is not based on Grid tools, but follows a more
classical approach.

THE NEW KANGA EVENT STORE

Event Design

An event in the Kanga event store consists of compo-
nents, which correspond to the different levels of detail
of the event data. A component is implemented as one
KanTree, a class derived from TTree, for data and one
KanTree for meta data. The clustering of component trees
to one or more ROOT files can be configured freely (fig. 1).
The maximum file size is limited to 2 GByte. The output
module automatically creates a continuation file if the size
limit is reached. We try to have file sizes close to 2 GByte
to keep the number of files in the event store as small as
possible.

References between objects in the same component as
well as references between objects in different components,
which may be stored in different files, get persisted using
the same custom reference class.

The key component of the event is the event header. An
event header holds a pointer to each of the event compo-
nents. Such a pointer basically consists of the logical file
name of the ROOT file containing the corresponding com-
ponent tree, and the number of the entry in that tree that
corresponds to the event. The component tree can be in the



same ROOT file as the event header, in another file of the
same event collection, or in a file of another collection .

Event components

PData Kan ee

T
Meta Data KanTree
level of
detail

Figure 1: Layout of an event in the new Kanga event store.

Event Collections

Events are organized in event collections, ordered lists
of event headers. An event collection can

e own a component: there’s a deep copy of the compo-
nent data in one of the ROOT files of this collection;
the component pointer in the event header points to a
file of this collection.

e borrow a component: the component pointer in the
header points to a file of a different collection. No
component data but just the component pointer is
stored in this collection.

This feature allows to create very compact pure pointer col-
lections in one case, and more performant deep copy col-
lections in another case. This variety is heavily used in
BaBar’s skim production, where 120 skims of events of in-
terest for a group of physics analyses get written. Most of
these skims have a deep copy of the Micro data and just
pointers to the other components.

Because a collection consists of simple ROOT files and
because it is relocatable, data import and export was cut
down to simple file copy.

File Access

The event collection is the user interface to retrieve event
data from the event store. If a collection has to be opened
for input, the logical file name (LFN) of the first file with
the event header tree of the collection gets constructed from
the collection name by a simple naming convention. E.g.
from the collection name

/store/PRskims/BOToccKFinal 0031
the LFN is constructed by adding an extension:

/store/PRskims/BOToccKFinal 0031.01.root
The translation from LFN to physical file name (PFN)
also is done without any file catalog or centrally managed
database. The application reads at startup a site specific
data access description file with some simple rules (s. fig.
2):

read /store/SP/* file /nfs/workdisk/skims/

read /store/PRskims/* xrootd kanolb-a: 1094/

The PEN is build by putting the LFN into a namespace ac-
cording these rules. In this example collections from the
simulation production (SP) are read by normal file access
from a nfs disk area, and all PRskims are read via xrootd
using the kanolb-a server. For the example collection the
resulting PFN is
root:/fkanolb-a://store/PRskims/BOToccKFinal 0031.01.root

Mysite

/store/x/y/myevents

Data Access Descriptieon

LFN = /store/x/y/myevents.0l.root

PFN = root://mysiteaccess//store/x/y/events.0l.root
PFN = rfio://castor/zzz/store/x/y/events.01.root
PFN = /mnt/bigdiskarea/store/x/y/events.0l.root
ete. ete.

Figure 2: Physical file names get constructed using a sim-
ple site specific data access descrition file. No central
database is involved.

BaBar’s Kanga event store is configured that way that
physics analysis jobs always read their event collections via
xrootd. xrootd allows a fault tolerant and load shared ac-
cess to the event store [4].

USR Data and Interactive Access

Two new features that we implemented with the comput-
ing model 2 are an event component for user customizable
data, and an interactive access to the data in the event store.
This allows us to replace most of the n-tuple production and
n-tuple based analysis. In the large n-tuples, that were pro-
duced by the analysis working groups in the past, a lot of
data gets duplicated, and there’s no link from n-tuple data
back to the event data.

In a skim job the user can define data that gets stored in
the USR event component. These data can be associated
to the event or to particle candidates that are stored in the
event. In a subsequent analysis job the USR data can be
used like n-tuple data.

The problem that had to be solved for an interactive ac-
cess to event store data from the ROOT prompt is that in the
BaBar computing model transient and persistent objects are
strictly seperated and an analysis job runs on transient ob-
jects, whereas a ROOT analysis runs on persistent objects.
We solved this by adding some functionality to the persis-
tent classes that offers accessors to the transient represen-
tations of the data, triggers the unpacking of the persisted
data, and caches the transient representations.



Example session The following lines show an exam-
ple for an interactive Kanga session:

root [0] gSystem->Load(libKanga.so);

This loads all the symbols that are necessary to use the
Kanga data.

root[1] KanEventSource* input =
KanEventSource: :mini();

This builds an object to read the events (TChain).

root[2] input->Add(/a/collection/of/events);
root[3] input->
Add(/an/other/collection/of/events);

This opens some collections for input. Collections are ac-
cessed in the same way as in framework applications us-
ing the data access description file to construct physical file
names.

root[4] input->Draw(Pid_DchPids.dedx());

This is the simplest possible use, plotting a trivial mem-
ber function of a stored object. Namely the energy loss of
charged particles in the Drift Chamber.

It’s also easy to use Kanga with RooFitCore:

root [5]
root [6]
root [7]
root [8]

TH1FmesHist (mes,mes, 100,5.2,5.3);
input->Project (mes,BSemiExcl_mES) ;
gSystem->Load (1ibRooFitBabar_root.so);
FitBMass(mesHist);

TOOLS

In addition to the core software we deployed a number of
tools for administration and maintenance of the event store.
The most important tool set are the bookkeeping tools [3],
which keep track of the event store content and offers an
user interface to query the run data base.

To get event collections of convenient size we use a tool
to merge the output collections of production jobs running
in parallel before they go to the event store.

To make the data stored in the old Objectivity event store
available for CM2 analysis we made a conversion applica-
tion.

There are a number of tools to inspect, move, and delete
event collections.

CURRENT STATUS OF THE KANGA
EVENT STORE

Currently BaBar’s Kanga event store contains ca. 3 x 10°
real data events and 3.2 x 102 MC events in 184 x 103 event
collections stored in 290 x 103 files. The total size is 161
TByte. All Micro and Mini data of the run periods Runl to
Run3 and the last big MC production were converted from
Objectivity to Kanga. During the last run period the Prompt

Reconstruction jobs wrote directly Kanga event store out-
put, and in the Simulation Production the new event store is
in use since Feb. 2004. Physics analysis is moving to CM2
since Jan. 2004, and today most analysis jobs read events
from the Kanga event store. At SLAC as the largest analy-
sis site in BaBar, usually 2000 analysis jobs are accessing
the Kanga event store in parallel.

After moving from Objectivity to Kanga reconstruc-
tion and MC production became significantly more stable,
mainly because there are no OODBMS related problems
like e.g. dead locks anymore. Due to the improved com-
pression and less overhead the event size shrinked, and
reading event data got noticeable faster. The latency for
data becoming available for analysis after they were writ-
ten to disk by the DAQ could be reduced from 7 days to 2
days. E.g., after the last data taking period ended, it took
6 days to calibrate, reconstruct, screen and skim all data,
and 11 days later the first paper based on these data was
submitted to PRL.

BaBar’s new Kanga event store, which is a key compo-
nent of BaBar’s new Computing Model 2, is used success-
fully in production since Feb. 2004, meeting all require-
ments from data production and analysis.

REFERENCES

[1] P. Elmer, “BaBar computing - From collisions to physics re-
sults”, presented at this conference.

[2] D. Brown, “The new BaBar Analysis Computing Model”,
presented at this conference.

[3] D. Smith, “BaBar Book Keeping project - a distributed meta-
data catalog of the BaBar event store.”, presented at this con-
ference.

[4] A. Hanushevsky, “The Next Generation Root File Server”,
presented at this conference.



