A DATABASE PROTOTYPE FOR MANAGING COMPUTER SYSTEMS
CONFIGURATIONS

Zh. Toteva, Sofia University/CERN, CH-1211 Geneva 23
N. Sinanis, CERN, CH-1211 Geneva 23
{ Zhechka.Toteva | Nick.Sinanis } @cern.ch

Abstract

We describe a database solution in a web application to
centrally manage the configuration information of
computer systems. It extends the modular cluster
management tool Quattor with a user friendly web
interface. System configurations managed by Quattor are
described with the aid of PAN[1], a declarative language
with a command line and a compiler interface. Using a
relational schema, we are able to build a database for
efficient data storage and configuration data processing.
The relational schema ensures the consistency of the
described model while the standard database interface
ensures the fast retrieval of configuration information and
statistic data.

The web interface simplifies the typical administration
and routine operations tasks, e.g. definition of new types,
configuration comparisons and updates etc. We present a
prototype built on the above ideas and used to manage a
cluster of developer workstations and specialized services
in CMS.

INTRODUCTION

The automated installation and configuration tasks have
been an ongoing research matter in order to facilitate the
fabric management task. The trend in the fabric
configuration description task has turned to be a
structured declarative description that offers a high-level
of data abstraction [2]. Most of the tools holding on to
this concept — EDG [3], SmartFrog [4], LCFG [5] - use
declarative languages for describing the configuration
information. The configuration information is centrally
stored and managed, while its deployment is dynamically
handled by procedural logic in the client subsystems. The
modular tool Quattor [1] addresses the automated
installation and configuration task according to the
mentioned concept. Quattor is a part of the WP4 layer of
the EUDataGrid project, coordinated by CERN.

Quattor uses a predefined tree-like structure for storing
the computer system configuration information. This
structure and the initialized configuration information are
written in files in the declarative ad hoc language PAN.
They are stored and processed in the Configuration
Database (CDB) [1]. To reduce the redundancy of
common data and to ensure the configuration coherence
there are created reusable groups of configuration

information. These configuration groups could be
transparently inherited and overloaded.

The problem

Although PAN is convenient for describing flexible
structures, it decreases the portability of the stored
configuration information. A high level of abstraction is
achieved only in the configuration information
declaration, but not in its managing. The configuration
data could be managed only on a file level with the
available CLI. The file-level configuration processing
appears to be inappropriate in the presence of a complex
schema of configurations’ hierarchies. Moreover, at the
moment the CDB does not offer the possibility of making
comparative analysis of the stored configuration data.
With the increase of the computer fabric configuration
scale, the fast retrieving of varied statistical information
for computers’ configurations becomes an important
necessity.

The goal

The goal of the paper is to propose a solution for
storing and managing fabric computer systems’
configurations for Quattor with a relational database
back-end and a web-client user interface. The logical
architecture of the prototype is based on an Object-
Instance Model (OIM). It is used for the description and
the initialization of the semi-defined structure of the
computer configuration information. The OIM is
physically implemented in a relational data model that
guarantees the schema consistency and the structure
extension. We try to meet the requirements of Quattor for
building groups of configuration information which could
be easily reused and transparently inherited. The SQL
standard relational database interface offers data
portability and a high level of data abstraction in the
configuration information management. The flexible web
interface presents the concrete and the inherited
configuration information and a convenient navigation
between schema-connected configuration data. The client
interface also offers application wizards that guarantee the
coherence of the entered configuration information with
the configuration information structure.

OBJECT-INSTANCE MODEL

The computer system configuration information is used
by the client deployment subsystems of Quattor. Aiming
to replace the CDB and PAN, we are obliged to follow
the configuration information structure used by Quattor,
called “Global Schema” [5].

“Global Schema™

According to the “Global Schema”, the computer
configuration information is divided into named units that
consist of logically connected computer configuration
features (Figure 1 - “software”, “hardware”, “system”).
The features of these units are divided into named
subunits according to a stronger logical inter-dependence.
The process of the dividing continues according to the
desired configuration information structure. The logical
structure chosen for describing the configuration
information is a property tree, built by tracing the names
of the logical units and features. The leaves nodes of the
tree are the features, which should be initialized.

Profile
e
Software 7 Al ~
Reposi System
Comaasite State: produc{ Netw urk.
'/p K] domainname: cern.ch
ackages Cedbname: T
apache Interfaces
Ve athil N
Ar
ey Hardware
. ™
CpU Harddisks
ol: Penti
i model: Pentium 11 sda
il || speed: 900 hda
T venda model: Penti model
N | speed: 900 | capacity | model: Quantum
\ vendor:Gen 20
ide
vendor: Elonex
serialnumber: 1111 N iy
¥

Figure 1: Computer configuration

Some of the configuration features describe common-
type logical units (“hda”, “sda”, “hdb”). The different
computers’ configurations have a different number of
these logically units. The correct description of the
configuration structure demands the common-type logical
units to be defined as vector elements. The common-type
logical units are distinguished in the computer
configuration initialization by the vector indexes.

Logical presentation

The prototype uses an object-instance mode (OIM) for
the logical presentation of the computer configuration
information. The OIM aims to differentiate the
declaration of the configuration information structure and
its initialization. The object, further called “Configuration
Tree Declaration” (CTD), presents the construction of the
property tree. A computer system configuration
initialization is assumed to be an instance of this object.

The object will be referred as “Configuration Tree
Initialization” (CTI).

The CTD is presented as a set, which elements are the
CTD nodes. The basic information that should be stored
for a CTD node (Figure 2) is the node unique identifier,
the node name, the node parent, the domain of the valid
values for the node (only for leaf nodes) and a boolean
flag stating if the node is a vector. The boolean flag
shows whether the node corresponds to a vector element.

z !
100 [“sda™ N
» 101 200 S
2102 ide|] T
...... » 103 | Quantum A
Harddisk : T &
” + 5 e * 120 “hda - = c
H ’ -7 i E
. » 10 capacity : o 122 | sesi
' long
B » 123 [Quantum ||]
c " .1.I interface :
r . string
!
12 mli:rilel- > 151 F*hdb" N
g » 153 80 8§
> 154] sesi| T
» 155 BM| A
¥ 120 [“hda” N
=121 13 e
21 | E
» 122 ide
» 123 [IBM] 2

Figure 2: Object-instance model

The CTI is also presented as a set, which elements are
the CTI nodes. Unfortunately, the CTD states only the
semantics of the CTI, but not its full structure. That fact
gives us the reason to call the configuration information
structure “semi-defined”. The paper addresses the
introduction of a unified structure for saving the
initialized computers systems configurations. The goal is
to create the CTI structure in a way that:

» the same configuration features for each two
different common-type logical units could be
distinguished in a computer configuration
initialization (Figure 2 - “Instance 1” - 101
and 121)

> the same configuration features for each two
equal common-type logical units in different
computer configurations are identified with
the same identifier (Figure 2 - “Instance 1”
and “Instance 2” - 121)

The necessary information which should be stored for a
CTI node is the node unique identifier, the node parent,
the node value, the reference to the CTD node, which the
CTI node initializes and the index of the node (only if the
corresponding CTD node is a vector).

The unique identifier of the CTI node is the supporting
point for solving the inheritance of the reusable
configuration groups and for comparing of the computer
system configurations.

COMPUTER CONFIGURATION
STRUCTURE

The configuration deployment process depends on the
computer configuration information structure. Different
configuration information structures results in different
levels of automatic configuration management.

The prototype offers the possibility to design different
CTDs and to support their initialization. In fact, the CTD
is assembled from predefined “Configuration Structure
Components™ (CSC). Each CSC contains the declaration
of logical connected configuration features (“cpu”,
“spma’”). The CSCs are assembled according to the rule: a
CSC could be included by any other CSC or by a CTD.
This modeling offers the advantages:

» A separate processing of the development and

> Different levels of an automatic management
of the computer configurations.

The physical implementation of CTDs in terms of the
entity-relationship model is expressed by a recursive
relationship (Figure 3). A CTD node is an instance of this
entity. There is a key attribute that uniquely identifies
each instance of the entity. The recursive relationship
states the parent node for a CTD node. Descriptive
attributes states the name, the data domain of a CTD node
and whether it is a vector element.

The CSCs are described in the same tree structure as
the CTDs, but they are stored in a different entity. The
two entities have common attributes. The same storage of
a CSC and a CTD causes same methods for their
processing. Because of this functional similarity, we will
refer the CSCs and the CTDs as ““Configuration units”

the production computer configuration (CU), while exposing the execution of the basic
structure. operation.
“Is child of” “Is child of”
FK1->PK FK2-=PK
ConfigurationComponent CTD
PK nodelD PK nodelD
“has the same “has the same
FKI1,11,U1 | parentiD ;]‘(';‘L;;k FK2,11,U1 | parentlD ;{2 :;K
rootlD N rootlD -
U1 nodeName — Ul nodeName ; I
nodeType nodeType
isVector isVector “initializes™ CTI
isRequired isRequired FK2->PK PK.I6 InitlD
Ll Ll PK,FK1,11,U1I5| GrouplD
validationFunc validationFunc
FK2,12 equalTo FK1,12 equalTo 13.ULIS InitPID
t | FK2,12,U1 nodelD
nodeValue
“has the same value as™ U1 Indchnique
FKI-=PK FK3,14 equalTo
. - FK3.14 equal ToGr
GroupHierarchy S ConfigurationGroup . equa’” otiroup
clers 1o
PK,FK1,12 | GrouplD FRI-=PK PK | GroupID “belongs to”
PK,FK2,11 | GroupParentID [P il ez s
> Ul | GroupName >
ParentOrder — Il | CTltype
refers to o ~
FK2-PK isComputerNode
UserOperationType

Figure 3: Relational database schema

Operations with a configuration unit

The CU is processed on a node level using the standard
SQL interface and procedural logic. The operations which
could be executed with the certain CU node are:

» modification

» deletion

» addition of a new node under it
» including of another CU under it

The including of a CU under the node physically results
in copying of the to-be-included CU data with
recalculated unique and parent identifiers. A relationship

states the dependence of a duplicate node on the original
one. Procedural logic transparently transfers an operation
executed with the original node to the duplicate one.

The web client user interface for managing the
computer configurations presents a CU in a directory-like
web component. The navigation between the CU nodes
resembles a directory browsing. The operations executed
with a CU are processed regarding the current chosen CU
node. The web controls restricted domains decrease the
possibility of random errors and guarantee the consistency
of the entered data. The client interface introduces extra
functionality for the addition of a CU into another one.
The available to-be-included CUs are listed in a
dynamically updated list control.

COMPUTER CONFIGURATION
INITIALIZATION

A great redundancy of data would have been generated
if the configuration data of all the computers have been
stored directly. Moreover, some of the configuration
features of computers that serve similar tasks are the
same. Configuration groups of initialized configuration
information are designed. They could be included into
each other and inherited according to definite schema
rules. Regarding their applicability, the configuration
groups could be separated into three categories:

» Specialized groups initialize logical connected
configuration features (ex. cpu “Intel Pentium
4” at 2.4 GHr).

» Ordinary groups initialize random features.
They could use a specialized group for
initialing a given sub-tree of the CTI. Also,
they could be inherited by and could inherit
other ordinary groups.

» Computer Configurations also initialize
random features. They differ from the
ordinary groups only by their extreme (could
not be inherited).

A configuration group is presented by a single CTI. A
CTI is characterized by 1) the CTD, that the group
initializes and 2) the CTD node, which the CTI root node
initializes. We will refer the last characteristic as CTI

type.

The computer configurations and the ordinary groups
initialize the whole CTD. Their CTI type is “profile”. The
specialized groups could be of different CTI type: “cpu”,
“hard disk”, etc. The CTIs of the same CTI type are
comparable due to the unique CTI node identifiers. An
important preliminary step before the initialization of CTI
features is the choice of its characteristics. This choice
defines the further applicability of the CTI.

In the terms of the entity-relationship model the CTI is
expressed by recursive relationship. The entity is used to
describe all the CTlIs. An instance of the entity is a CTI
node for a CTI. The recursive relationship states the
parent node for a CTI node in the certain CTIL. A
relationship to the “CTD” entity (FK2) shows which CTD
node a CTI node initializes. The CTI node identifier is
generated by demand. The initialization of a new CTI
node for a certain CT1 is preceded by a check whether this
node has been already initialized by some other CTI. In
this case, the identifier is taken from the existing instance
of the “CTI” entity. Otherwise, a new identifier is created.

Operations with a CTI

The CTl is processed using the standard SQL interface
and procedural logic on two levels:

1. manipulation of the CTI characteristics

2. manipulation of a CTI node

The first level of processing includes the choice of the
two mentioned characteristics and the creation of
configuration groups’ hierarchy. A configuration groups’
hierarchy could be created from ordinary groups and
computer configurations, which initializes the same CTD.
The multi-inheritance is solved by introducing a parents’
order, according which the CTI features of the parents
groups are overridden (Figure 3 -“GroupHierarchy™).

The operations which could be executed with a certain
CTI node are:

» modification

> deletion

> addition of a new node under it
>

including of a specialized group of a specific
CTI type under it

The including of a reusable group under the CTI node
is processed in the similar way as the including of a CU
into another CU. Procedural logic transparently spreads
the modifications made in the specialized group to the
groups which use it.

The operations with CTIs are executed in a user
session. The commit (rollback) of the user operations is
up to the user decision. The real changes are executed
when the user commits the session. Procedural logic
resolves the configuration data modifications and the
configuration groups hierarchy changes. The affected
computers configuration information is recalculated. It is
written in files that satisfy the format expected by the
Quattor deployment systems. UDP notification packets
are sent to the concerned computer systems.

Web user interface

The configuration information is initialized and
managed via the web user interface per a CTI (Figure 4).
The operations executed with a CTI are processed
regarding the current chosen CTI node. The user could
review all the initialized children nodes of this CTI node
in two grid controls. The first one displays the initialized
children nodes as a result of the solved inheritance. The
second one reveals only the children nodes initialized for
the given CTI taking into account the user modifications.

The user interface offers a wizard for an addition and a
modification of a node. The CTI nodes that could exist
under a certain node are listed in a dynamically updated
list control. The web interface also offers a list of all the
initializations of the chosen CTI node. A dynamically
generated list box displays the specialized groups which
could be included under the current node depending on
their CTI type.

The parents of ordinary groups and computer
configurations could be chosen from a dynamically
generated list control. In a second list control the user
could reorder the chosen parents’ configuration groups.

T} Add ‘Edit Rewsable Configuration Groups - Microsolt Intemet Esplorer I (= |

Be [Yew Fgeoites Jook Heo >
Q- O - (] (2] G sewe Crrmmnes @hneis €| (I [2l |
Adress [] hito: flocshost -B080/F sbrichanagement [TI_ObiectGroups_EdE. kp7GrouplD=a4 =] Bl |ums |4 -
Cormperert Add/Edit Computer Configuration T
Qrdlrary Groups Group Name | bexamgiel |
oLt Avallable Groups | parent aroups | '
Commit F
Eolbak software_packages_cemn_celd_cernce_b declaration_profile_base
g software_packages_cern_celd_quatior hardware_fileserver_slonex_B00_ez
Globa| Schema software_packages_cemn_redhat?_3_asi bretinfio_cme01d
Lot woftware_packages_cern_redhat?_3_ce
software_packages_cerm_rechat?_3_qu
2§ rouptnaibatzation - Msosch Indermet balores = — 101 %)
Be £ Wew Fporss [ods beb i
Qe - - 0]] (] s e e €| (- M
giress [] betp [focatest Tl It ot ¥ e X =B (s =
et (ke Search Initialized Nodes for Computer Configurations E
Commi | o ~
Ealbach Group Nama || Raargie] =
Global Scheeny “Shaw Al Inborited | :Mm
Legat T v
Type:
Vector yes
Gaup | Search |
List of Initialized Nodes for Computer Configurations - show all inherited
mmum_gm m[mm&nﬂu|m&!§___|_5@!:m_@@n_
Chilran hwid 00-0C-E3-00- %87 sting m [
Chegren bus pel string o hardware_fileserver_skonen_800_ee card_nic_Notgear_GAS30
Chikren manufactorer Netgear wing o harchware_fileserver_slonen_B00_e2 card_nic_Netges_GAS30
Chiltren media Gigan Eherrat string m hardvware_fileserver_slores_B00_gz card _nic_Netgear_GAS30
Children name Netgear GAS30 string m hardware_fileserver_slones_B00_sz card_nic_Netgesr_GAS0 =
First Prev 1 of 1 Next Last ..ﬂ
List of User Ch;rms in the Initialized Nodes for Computer Configurations W Local rerarnt =
Node Name | Node Vale | Node Type | [vector | validation func | Group Nome | Equal To Group | User jon |
Chaliren twid 00-02-E3-00-3C47 sring o bezarplel
Bl N Fiest Prow 1ol 1 st Last |
Add/Edit Initialized Node for Computer Configurations
MNode Name marufactorer hd
Node Vake | [Select vaim =]
= {Select Valm
Type:string {3Com Corporation
Veokrno {cvanced Micro Devices
| 2 cadcam lbapcv.wm'mk remes l\v-':'w Gigabit Ethernet {rev 12}
mmml[akxvam = | = Hi 701 Gigabit Ethernat
. J :Cl
e corp. ecmacem 6 Gigabit Etherrst
Bietgnar
=

Figure 4: Computer information initialization — user interface

The second one has been solved with the aid of SQL and

STATISTICS RETRIEVAL procedural logic. The project has delivered a prototype

The prototype offers statistical information for the Proving the key concepts of the inheritance validation.

initialized computer configurations information. The The override processing has been already investigated and

RDBMS ensures the fast retrieval of the desired Proved. The prototype is planned to manage the varied

information only by the SQL interface means. At the configurations information of nearly 300 computers of the
moment the web client interface gives the following ~CMS cluster at CERN.

statistical information: As future work it is well worth making an optimization
> computer configurations which have a certain ~ Of the database operations. The tuning and the multi-
feature satisfying a certain criteria thread processing of the computer configurations

))) information recalculation would result in the minimum

> comparison of two computer configurations response and manipulation time. Another possible task is

> computer configurations which are using a tO improve the web-application wizards and to implement
certain predefined component new graphical controls that will increase the data

))) o abstraction in the user-interface.
The result configuration data information is presented
in grid controls. Links offer a er_X|bIe navigation between References
different schema-connected configuration data.
[1] http://quattor.web.cern.ch/quattor
CONCLUSIONS [2] “Three languages for fabric configuration”, 2003

The prototype addresses the problems of the [3] http://eu-datagrid.web.cern.ch/eu-datagrid/
presentation of structured data with a semi-defined

structure in the relational database model and the [4] http://www.hpl.hp.com/research/smartfrog/
transparent managing of a high-level data abstraction. The [5] http://www.lcfg.org
solution to the first one is based on a relational database.

http://quattor.web.cern.ch/quattor
http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/039.pdf
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://www.hpl.hp.com/research/smartfrog/
http://www.lcfg.org/

	INTRODUCTION
	OBJECT-INSTANCE MODEL
	COMPUTER CONFIGURATION STRUCTURE
	COMPUTER CONFIGURATION INITIALIZATION
	STATISTICS RETRIEVAL
	CONCLUSIONS
	References

