
PATHS: SPECIFYING MULTIPLE JOB OUTPUTS VIA FILTER
EXPRESSIONS

C. D. Jones*, Cornell University, Ithaca, NY 14853 USA

Abstract
A common task for a reconstruction/analysis system is to
output different sets of events to different permanent data
stores (e.g., files). This allows multiple related logical
jobs to be grouped into one process and run using the
same input data (read from a permanent data store and/or
created by an algorithm). In our system, physicists can
specify multiple output 'paths', where each path contains a
group of filters followed by output 'operations'. The
filters are combined using a physicist-specified boolean
expression; only if the expression evaluates to true will
the output operation be performed for that event. Paths
do not explicitly specify the order in which data objects
should be created, since our system uses a 'data on
demand' mechanism, that causes data to be created the
first time the data are requested. Separating the data
dependencies from the event selection criteria vastly
simplifies the task of creating a path, thereby making the
facility more accessible to physicists.

INTRODUCTION
A common feature of a reconstruction/analysis system

is the ability to output different sets of events to different
permanent data stores (e.g., files). This allows multiple
related logical jobs to be grouped into one process and
run using the same input data (read from a permanent data
store and/or created by an algorithm). In this paper we
discuss the CLEO data processing system’s [1] solution to
this task: paths.

Anatomy of a Data Processing System
Most HEP experiments use data processing systems

that subdivide the system into software modules where
each module can perform one, or more, of the following
tasks:
• Source: provides data from persistent media: e.g.,

read found tracks from a file
• Sink: stores data to persistent media: e.g., write

fitted tracks to a file
• Producer: runs an algorithm to create new data:

e.g., fit the tracks that have been found
• Filter: selects events for further processing: e.g.,

reject events with less than three fit tracks
• Analyzer: performs an analysis on the selected

events: e.g., histogram the momentum of the found
tracks

Data Processing
Processing data is typically accomplished via the

following algorithm. First, a new event is obtained from

a Source. Second, groups of Filters are run to determine
if the event passes the selection criteria. If the event fails
the criteria, the event is abandoned and the algorithm
returns to step one. If the event passes the criteria, it is
handed off to the Analyzers and Sinks. Producers must
be run before the data they supply is used. This can be
accomplished by either explicitly placing Producers in the
processing chain so they are called before any other
Producer, Filter, Analyzer or Sink that depends on those
data, or implicitly by using a ‘data on demand’ system.

Some data processing jobs require that different events
be processed by different modules. The standard example
of this is the need to write events into different output
files based on the events’ characteristics. Therefore a
data processing system needs a way to specify how event
filters are grouped together to form a logical decision
about which Analyzers and/or Sinks will be allowed to
process a given event. In this paper we will describe how
the CLEO data processing system handles this
requirement via its use of ‘paths’.

THE CLEO DATA PROCESSING
SYSTEM

The simple-to-use mechanism for declaring and using
paths in the CLEO data processing system is made
possible by several key features of the system.

General Purpose Tools
The CLEO data processing system has been designed to

accommodate the various data processing tasks of the
experiment: online software trigger, online event
monitoring, online event display, offline calibration,
reconstruction, detector simulation, analysis and offline
event display. A central design goal was to make the
system easy to use. To accommodate ease of use and
flexibility, we needed to build the system using a small
number of types of components (so users would not need
to learn very many new concepts) but have those
components embody general purpose tasks. We
ultimately decomposed the system into four general
purpose components: Source, Sink, Producer and
Processor. The first three perform the tasks of the same
names as described in the Introduction. A Processor is
actually a combined Producer, Analyzer and Filter. We
decided to combine the three tasks into one software
module because when physicists do an analysis they
would rather edit one software class than (potentially)
three. In addition, it can be conceptually useful to be able
to intersperse Analyzers and Filters in the same
*cdj@mail.lepp.cornell.edu

processing sequence. Making them the same class makes
it easier to build such a sequence in software.

Data on Demand
One novel feature of the CLEO data processing system

is its use of ‘data on demand’ [2]. When configuring a
data processing job, a user does not explicitly state when
a Producer’s algorithm should be run. Instead, the user
just specifies which Producers they want to use in the job.
At run-time, when a software module requests a particular
type of data the Producer associated with that data type
will be called automatically. If multiple Producers in the
job can deliver the same data type, we choose the last one
selected as being the source for that data. Using ‘data on
demand’ dramatically simplifies the specification of a job
since users are not required to know the actual data
dependencies between modules. It also aids in run-time
performance optimization, since only algorithms whose
results are actually needed will be run.

Dynamic Loading
A data processing job is made up of many small

software modules combined in a set sequence. When
started, the CLEO data processing application knows
nothing about the specific software tasks it needs to
perform. Instead, the binary code for each software
module is dynamically loaded into the application at run
time under the direction of the user’s command (either
interactively or through a script). Multiple instances of the
same type of module can be loaded into the system by
specifying a unique prefix to add to the module’s name.
This allows multiple instances of an algorithm, each with
different run-time configuration, to be run in the same
job.

The benefits of dynamic loading are manifold. First, it
decreases the time to reconfigure a job, since there is no
need to change makefiles and then relink a large
executable. Second, since only the software modules the
user actually wants to use in that job are loaded into the
job, there is no need for a way to disable and enable
software modules. To enable a module, the user just
loads one instance into the application and to disable a
module, the user just removes it from the application. (A
‘remove’ is not as flexible as a ‘disable’, since the state of
the module will be lost. However, we have never
encountered a problem with this in practice.) This also
means that we can enforce an ‘if it is loaded, it must be
used’ rule to avoid any user mistakes that would cause
their jobs to run for a long time but fail to do what they
want because they forgot to enable a module.

PATH SPECIFICATION
A Path is a sequence of Processors that work as a filter to
decide if an event should be passed to a terminating set of
Sinks and/or Processors. It is important to note that
Producers are not specified in a Path. This is due to the
system’s use of ‘data on demand’. Therefore, the path is
purely an event filtering mechanism and is not needed to

ensure proper data creation sequencing (e.g., that tracks
are found before the job attempts to fit the tracks). This
concentration on filtering allows users to only have to
specify what only they can answer (i.e., what filters do
they want to apply to decide if an event should be
processed). The system deduces what is necessary to
make the job run properly (i.e., when a piece of data
should be created in order to satisfy the first request for
that data).

Conceptual Model
The conceptual model of the path system is described

below. A job is made up of one or more paths. Each path
has two parts: a filter and an operation. A path’s filter is a
Boolean expression made up of a sequence of Processors
combined together using Boolean operators (and, or, xor
and not). Since it is common for the same Processor
Boolean expression to be used in different paths, a user
can create a ‘named filter’ to hold that expression. That
‘named filter’ can be used in the same place as a
Processor’s name in the specification of a path’s filter or
in the creation of an additional ‘named filter’. A
Processor or ‘named filter’ that appears multiple times in
one or more path specifications is guaranteed to be run at
most once per event. A path’s operation is the activity the
user wants to have happen if the filter succeeds.
Functionally an operation is an unordered list of
Processors and/or Sinks. When a Processor is used as
part of an operation, the decision of the Processor (i.e.,
whether the event passes or fails) is ignored.

Notation
The syntax to explicitly create a path is

path create path-name filter-exp >> operation

where

filter-exp := [not] fname [and|or|xor filter-exp]
operation := oname [oname]
fname := proc-name | filter-name
oname := proc-name | sink-name

In plain English, the path create method takes as its

first argument the name of the path being created. The
second argument is a filter expression. The filter
expression is terminated with the >> symbol. The last
arguments are the list of Processors and/or Sinks that
make up the operation. The filter expression is made up
of Processor and/or filter names joined together by the
Boolean operations and, or and xor. If a name is
preceded by not then the value returned by the named
object is inverted. Parenthetical sub-expressions are not
supported since sub-expressions can be achieved using
‘named filters’.

The syntax to create a named filter is

path filter create filter-name filter-exp

The path filter create method takes the name of the
filter as its first argument and the rest of the arguments for
the filter expression, which uses the same syntax as the
filter expression in the path create method.

Enforced Rules
To avoid common user mistakes, the system enforces

the following set of rules. First, any Processor or Sink
loaded into a job must be used in a path. This avoids
accidentally forgetting to use a Processor. With dynamic
loading, there is no need to have unused modules in the
job. Second, all Sinks and Processors that appear in a
path’s operation must only appear once, and only in one
path designation. This guarantees that the purpose of a
path (which is to make it easy to set up the criteria needed
to specify when to apply the operation) is enforced. If
items in the operation were allowed to appear elsewhere,
it would be difficult to decipher the condition under
which that item would be given an event.

Expression Evaluation
The filter expressions are parsed left to right, with the

result being an expression graph (see Figure 1). The use
of ‘filter names’ creates sub-graphs in the expression
graph. If several consecutive parts of the expression
share the same operation (e.g., and), only one filter object
is created for those parts.

Figure 1: Path example as an expression graph

Simple Path
The simplest case is also the most common: the user

wants only one path made up of all the Processors in the
job (which is often just one), and only if all the Processors
pass the event should that event be written to the Sink. In
this case, users are not required to explicitly create a path.
Instead, the system implicitly creates a default path where
the order of the Processors in the path is the same as the
order in which they were loaded into the job. This way,
the majority of users never have to learn about paths in
order to do their work.

EVENT PROCESSING
During event processing, each path is treated

separately. Only if the path’s filter expression evaluates to
‘true’ will the path’s operation be processed for that
event.

Optimization
If a Processor or ‘named filter’ appears multiple times

(either in one path or in multiple paths) it will only be
executed the first time its value is requested and that
value will be cached. All subsequent requests will return
the cached value.

If the value of a sub-expression (or the full expression)
of the filter expression can be determined while
evaluating the filter expression from left to right, then the
remaining ‘right’ terms of the sub-expression will not be
evaluated (since they can have no impact on the value of
the sub-expression). For example, say we have the
expression:

AProc and BProc and CProc

If AProc returns false for a particular event, then the
entire expression must evaluate to false. Therefore, for
this event, BProc and CProc will not be called.

A more complicated example is:

AProc and BProc or CProc

If AProc returns false for a particular event then the value
returned by BProc will not affect the result of the
expression, but the value of CProc could. Therefore
BProc will not be evaluated but CProc will. If AProc
returns true then CProc will only be evaluated if BProc
returns false. In contrast, different Processors will be run
for the equivalent expression:

filter Filter := AProc and BProc
CProc or Filter

if CProc returns true, then the sub-expression AProc and
BProc will not be evaluated. If CProc returns false then
BProc will only be evaluated if AProc returns true.

Error Handling
In the CLEO data processing application, a run time

error that happens during event processing throws a C++
exception. If that exception propagates up all the way to
the event processing loop, one of two things can happen:
the job will end with an error or the job will proceed.
The choice depends on how the user configured the job.

If the user has specified that a job should proceed when
an uncaught exception occurs, then the path that was
being evaluated at the time of the exception will be
aborted and the next path in the sequence will be allowed
to process that event. It is possible for multiple paths to be
aborted because of the same underlying problem (e.g.,
they all ask for non-existent data). In all cases, the

aborted paths will be executed for any subsequent events
that are processed.

EXAMPLE JOB
A real life example is our use of paths to cluster and

index events as the final step of reconstruction. CLEO’s
new EventStore [3] allows users to access all our events
from one simple interface. The data for the events are
clustered by physics category, with each event is stored in
only one data file. Indexes (which determine what events
to process) are allowed to index events that are stored
across multiple data files. The data files and index files
are created using paths. A simplified version of the path
specification for the reconstruction job is shown In Figure
2.
This job creates five paths. The first path has no filter and
instead runs three Processors that monitor the
reconstruction collation job. The Processor
EventTypeFilterProc is used to filter events based on their
gross physical characteristics. Multiple instances of this
Processor are used where the postfix following the @ sign
denotes the type of events the filter will pass. Therefore,
the filter named ‘qcd’ will only pass events that are
believed to be caused by qcd processes, while the filter
named ‘bhabha’ will only pass bhabha events. The paths
that fill the qcd data and index files use the same filter
since both files are meant to hold information about all
qcd events. The filters for the paths for filling bhabha
data and index files are different. The reason is that any
event that passes both the qcd and bhabha selections
should have its data stored in the qcd.data file and not in
the bhabha.data file. However, such an event should
appear in both the qcd.index and bhabha.index files.

CONCLUSION
Event processing control flow is an advanced but

common feature of modern data processing systems. The
CLEO design leverages CLEO’s use of dynamic loading
and ‘data on demand’ to simplify the specification of the
control flow. This allows users to concentrate solely on
specifying the task they wish to accomplish and therefore
makes them more productive.

ACKNOWLEDGEMENTS
This work was supported by the National Science

Foundation.

REFERENCES

[1] C.D. Jones and M. Lohner. CLEO’s user centric data

access system. In International Conference on
Computing in High-Energy Physics and Nuclear
Physics (CHEP 2000), Padova, Italy, Feb 2000

[2] C.D. Jones, Reconstruction and Analysis on Demand:
A Success Story. 2003 Computing in High Energy
and Nuclear Physics (CHEP03), La Jolla, Ca, USA,
March 2003

[3] C.D. Jones, EventStore: Managing Event Versioning
and Data Partitioning using Legacy Formats. In
International Conference on Computing in High-
Energy Physics and Nuclear Physics (CHEP 2004),
Interlaken, Switzerland, Sept 2004

#create the path used to monitor the job
path create monitor >> DataMonitorProc PrintEventNumberProc WatchDiskSpaceProc

#create event selection filters
path filter create qcd EventTypeFilterProc@qcd
path filter create bhabha EventTypeFilterProc@bhabha
path create qcd_data qcd >> qcd.data
path create qcd_index qcd >> qcd.index
path create bha_data bhabha and not qcd >> bhabha.data

path create bha_index bhabha >> bhabha.index

Figure 2: Reconstruction Job Output Paths Example

