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Abstract 
A common task for a reconstruction/analysis system is to 
output different sets of events to different permanent data 
stores (e.g., files).  This allows multiple related logical 
jobs to be grouped into one process and run using the 
same input data (read from a permanent data store and/or 
created by an algorithm).  In our system, physicists can 
specify multiple output 'paths', where each path contains a 
group of filters followed by output 'operations'.  The 
filters are combined using a physicist-specified boolean 
expression; only if the expression evaluates to true will 
the output operation be performed for that event.  Paths 
do not explicitly specify the order in which data objects 
should be created, since our system uses a 'data on 
demand' mechanism, that causes data to be created the 
first time the data are requested.  Separating the data 
dependencies from the event selection criteria vastly 
simplifies the task of creating a path, thereby making the 
facility more accessible to physicists. 

INTRODUCTION 
A common feature of a reconstruction/analysis system 

is the ability to output different sets of events to different 
permanent data stores (e.g., files).  This allows multiple 
related logical jobs to be grouped into one process and 
run using the same input data (read from a permanent data 
store and/or created by an algorithm). In this paper we 
discuss the CLEO data processing system’s [1] solution to 
this task: paths. 

Anatomy of a Data Processing System 
Most HEP experiments use data processing systems 

that subdivide the system into software modules where 
each module can perform one, or more, of the following 
tasks: 
• Source: provides data from persistent media: e.g., 

read found tracks from a file 
• Sink: stores data to persistent media: e.g., write 

fitted tracks to a file 
• Producer: runs an algorithm to create new data: 

e.g., fit the tracks that have been found 
• Filter: selects events for further processing: e.g., 

reject events with less than three fit tracks 
• Analyzer: performs an analysis on the selected 

events: e.g., histogram the momentum of the found 
tracks 

Data Processing 
Processing data is typically accomplished via the 

following algorithm.  First, a new event is obtained from 

a Source.  Second, groups of Filters are run to determine 
if the event passes the selection criteria.  If the event fails 
the criteria, the event is abandoned and the algorithm 
returns to step one.  If the event passes the criteria, it is 
handed off to the Analyzers and Sinks.  Producers must 
be run before the data they supply is used.  This can be 
accomplished by either explicitly placing Producers in the 
processing chain so they are called before any other 
Producer, Filter, Analyzer or Sink that depends on those 
data, or implicitly by using a ‘data on demand’ system. 

Some data processing jobs require that different events 
be processed by different modules.  The standard example 
of this is the need to write events into different output 
files based on the events’ characteristics.  Therefore a 
data processing system needs a way to specify how event 
filters are grouped together to form a logical decision 
about which Analyzers and/or Sinks will be allowed to 
process a given event.  In this paper we will describe how 
the CLEO data processing system handles this 
requirement via its use of ‘paths’. 

THE CLEO DATA  PROCESSING 
SYSTEM 

The simple-to-use mechanism for declaring and using 
paths in the CLEO data processing system is made 
possible by several key features of the system. 

General Purpose Tools 
The CLEO data processing system has been designed to 

accommodate the various data processing tasks of the 
experiment: online software trigger, online event 
monitoring, online event display, offline calibration, 
reconstruction, detector simulation, analysis and offline 
event display. A central design goal was to make the 
system easy to use.  To accommodate ease of use and 
flexibility, we needed to build the system using a small 
number of types of components (so users would not need 
to learn very many new concepts) but have those 
components embody general purpose tasks.  We 
ultimately decomposed the system into four general 
purpose components: Source, Sink, Producer and 
Processor.  The first three perform the tasks of the same 
names as described in the Introduction.  A Processor is 
actually a combined Producer, Analyzer and Filter.  We 
decided to combine the three tasks into one software 
module because when physicists do an analysis they 
would rather edit one software class than (potentially) 
three.  In addition, it can be conceptually useful to be able 
to intersperse Analyzers and Filters in the same 
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processing sequence. Making them the same class makes 
it easier to build such a sequence in software. 

Data on Demand 
One novel feature of the CLEO data processing system 

is its use of ‘data on demand’ [2].  When configuring a 
data processing job, a user does not explicitly state when 
a Producer’s algorithm should be run.  Instead, the user 
just specifies which Producers they want to use in the job. 
At run-time, when a software module requests a particular 
type of data the Producer associated with that data type 
will be called automatically. If multiple Producers in the 
job can deliver the same data type, we choose the last one 
selected as being the source for that data. Using ‘data on 
demand’ dramatically simplifies the specification of a job 
since users are not required to know the actual data 
dependencies between modules.  It also aids in run-time 
performance optimization, since only algorithms whose 
results are actually needed will be run. 

Dynamic Loading 
A data processing job is made up of many small 

software modules combined in a set sequence.  When 
started, the CLEO data processing application knows 
nothing about the specific software tasks it needs to 
perform.  Instead, the binary code for each software 
module is dynamically loaded into the application at run 
time under the direction of the user’s command (either 
interactively or through a script). Multiple instances of the 
same type of module can be loaded into the system by 
specifying a unique prefix to add to the module’s name.  
This allows multiple instances of an algorithm, each with 
different run-time configuration, to be run in the same 
job. 

The benefits of dynamic loading are manifold. First, it 
decreases the time to reconfigure a job, since there is no 
need to change makefiles and then relink a large 
executable.  Second, since only the software modules the 
user actually wants to use in that job are loaded into the 
job, there is no need for a way to disable and enable 
software modules.  To enable a module, the user just 
loads one instance into the application and to disable a 
module, the user just removes it from the application.  (A 
‘remove’ is not as flexible as a ‘disable’, since the state of 
the module will be lost.  However, we have never 
encountered a problem with this in practice.)  This also 
means that we can enforce an ‘if it is loaded, it must be 
used’ rule to avoid any user mistakes that would cause 
their jobs to run for a long time but fail to do what they 
want because they forgot to enable a module. 

PATH SPECIFICATION 
A Path is a sequence of Processors that work as a filter to 
decide if an event should be passed to a terminating set of 
Sinks and/or Processors.  It is important to note that 
Producers are not specified in a Path.  This is due to the 
system’s use of ‘data on demand’.  Therefore, the path is 
purely an event filtering mechanism and is not needed to 

ensure proper data creation sequencing (e.g., that tracks 
are found before the job attempts to fit the tracks).   This 
concentration on filtering allows users to only have to 
specify what only they can answer  (i.e., what filters do 
they want to apply to decide if an event should be 
processed).  The system deduces what is necessary to 
make the job run properly (i.e., when a piece of data 
should be created in order to satisfy the first request for 
that data). 

Conceptual Model 
The conceptual model of the path system is described 

below.  A job is made up of one or more paths.  Each path 
has two parts: a filter and an operation.  A path’s filter is a 
Boolean expression made up of a sequence of Processors 
combined together using Boolean operators (and, or, xor 
and not).  Since it is common for the same Processor 
Boolean expression to be used in different paths, a user 
can create a ‘named filter’ to hold that expression.  That 
‘named filter’ can be used in the same place as a 
Processor’s name in the specification of a path’s filter or 
in the creation of an additional ‘named filter’.  A 
Processor or ‘named filter’ that appears multiple times in 
one or more path specifications is guaranteed to be run at 
most once per event.  A path’s operation is the activity the 
user wants to have happen if the filter succeeds.  
Functionally an operation is an unordered list of 
Processors and/or Sinks.  When a Processor is used as 
part of an operation, the decision of the Processor (i.e., 
whether the event passes or fails) is ignored. 

Notation 
The syntax to explicitly create a path is 
 

path create path-name filter-exp >> operation 
 
where 

 
filter-exp := [not] fname [and|or|xor filter-exp] 
operation := oname [oname] 
fname := proc-name | filter-name 
oname := proc-name | sink-name 

 
In plain English, the path create method takes as its 

first argument the name of the path being created.  The 
second argument is a filter expression.  The filter 
expression is terminated with the >> symbol.  The last 
arguments are the list of Processors and/or Sinks that 
make up the operation.  The filter expression is made up 
of Processor and/or filter names joined together by the 
Boolean operations and, or and xor.  If a name is 
preceded by not then the value returned by the named 
object is inverted. Parenthetical sub-expressions are not 
supported since sub-expressions can be achieved using 
‘named filters’. 

The syntax to create a named filter is 
 

path filter create filter-name filter-exp 
 



The path filter create method takes the name of the 
filter as its first argument and the rest of the arguments for 
the filter expression, which uses the same syntax as the 
filter expression in the path create method. 

Enforced Rules 
To avoid common user mistakes, the system enforces 

the following set of rules.  First, any Processor or Sink 
loaded into a job must be used in a path. This avoids 
accidentally forgetting to use a Processor.  With dynamic 
loading, there is no need to have unused modules in the 
job.  Second, all Sinks and Processors that appear in a 
path’s operation must only appear once, and only in one 
path designation.  This guarantees that the purpose of a 
path (which is to make it easy to set up the criteria needed 
to specify when to apply the operation) is enforced.  If 
items in the operation were allowed to appear elsewhere, 
it would be difficult to decipher the condition under 
which that item would be given an event. 

Expression Evaluation 
The filter expressions are parsed left to right, with the 

result being an expression graph (see Figure 1).  The use 
of ‘filter names’ creates sub-graphs in the expression 
graph.  If several consecutive parts of the expression 
share the same operation (e.g., and), only one filter object 
is created for those parts. 

 
Figure 1: Path example as an expression graph 

Simple Path 
The simplest case is also the most common: the user 

wants only one path made up of all the Processors in the 
job (which is often just one), and only if all the Processors 
pass the event should that event be written to the Sink.  In 
this case, users are not required to explicitly create a path. 
Instead, the system implicitly creates a default path where 
the order of the Processors in the path is the same as the 
order in which they were loaded into the job.  This way, 
the majority of users never have to learn about paths in 
order to do their work. 

EVENT PROCESSING 
During event processing, each path is treated 

separately. Only if the path’s filter expression evaluates to 
‘true’ will the path’s operation be processed for that 
event. 

Optimization 
If a Processor or ‘named filter’ appears multiple times 

(either in one path or in multiple paths) it will only be 
executed the first time its value is requested and that 
value will be cached.  All subsequent requests will return 
the cached value. 

If the value of a sub-expression (or the full expression) 
of the filter expression can be determined while 
evaluating the filter expression from left to right, then the 
remaining ‘right’ terms of the sub-expression will not be 
evaluated (since they can have no impact on the value of 
the sub-expression).  For example, say we have the 
expression: 

 
AProc and BProc and CProc 

 
If AProc returns false for a particular event, then the 
entire expression must evaluate to false.  Therefore, for 
this event, BProc and CProc will not be called.   

A more complicated example is: 
 
AProc and BProc or CProc 

 
If AProc returns false for a particular event then the value 
returned by BProc will not affect the result of the 
expression, but the value of CProc could.  Therefore 
BProc will not be evaluated but CProc will. If AProc 
returns true then CProc will only be evaluated if BProc 
returns false.  In contrast, different Processors will be run 
for the equivalent expression: 

 
filter Filter := AProc and BProc 
CProc or Filter 

 
if CProc returns true, then the sub-expression AProc and 
BProc will not be evaluated.  If CProc returns false then 
BProc will only be evaluated if AProc returns true. 

Error Handling 
In the CLEO data processing application, a run time 

error that happens during event processing throws a C++ 
exception.  If that exception propagates up all the way to 
the event processing loop, one of two things can happen: 
the job will end with an error or the job will proceed.   
The choice depends on how the user configured the job. 

If the user has specified that a job should proceed when 
an uncaught exception occurs, then the path that was 
being evaluated at the time of the exception will be 
aborted and the next path in the sequence will be allowed 
to process that event. It is possible for multiple paths to be 
aborted because of the same underlying problem (e.g., 
they all ask for non-existent data).  In all cases, the 



aborted paths will be executed for any subsequent events 
that are processed. 

EXAMPLE JOB 
A real life example is our use of paths to cluster and 

index events as the final step of reconstruction.  CLEO’s 
new EventStore [3] allows users to access all our events 
from one simple interface.  The data for the events are 
clustered by physics category, with each event is stored in 
only one data file.  Indexes (which determine what events 
to process) are allowed to index events that are stored 
across multiple data files.  The data files and index files 
are created using paths.  A simplified version of the path 
specification for the reconstruction job is shown In Figure 
2. 
This job creates five paths.  The first path has no filter and 
instead runs three Processors that monitor the 
reconstruction collation job.  The Processor 
EventTypeFilterProc is used to filter events based on their 
gross physical characteristics.  Multiple instances of this 
Processor are used where the postfix following the @ sign 
denotes the type of events the filter will pass.  Therefore, 
the filter named ‘qcd’ will only pass events that are 
believed to be caused by qcd processes, while the filter 
named ‘bhabha’ will only pass bhabha events.  The paths 
that fill the qcd data and index files use the same filter 
since both files are meant to hold information about all 
qcd events.  The filters for the paths for filling bhabha 
data and index files are different.  The reason is that any 
event that passes both the qcd and bhabha selections 
should have its data stored in the qcd.data file and not in 
the bhabha.data file.  However, such an event should 
appear in both the qcd.index and bhabha.index files. 

CONCLUSION 
Event processing control flow is an advanced but 

common feature of modern data processing systems.  The 
CLEO design leverages CLEO’s use of dynamic loading 
and ‘data on demand’ to simplify the specification of the 
control flow.  This allows users to concentrate solely on 
specifying the task they wish to accomplish and therefore 
makes them more productive. 
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#create the path used to monitor the job 
path create monitor >> DataMonitorProc PrintEventNumberProc WatchDiskSpaceProc 
 
#create event selection filters 
path filter create qcd EventTypeFilterProc@qcd 
path filter create bhabha EventTypeFilterProc@bhabha 
path create qcd_data   qcd                              >> qcd.data 
path create qcd_index qcd                             >> qcd.index 
path create bha_data   bhabha and not qcd  >> bhabha.data 

path create bha_index bhabha                       >> bhabha.index 

Figure 2: Reconstruction Job Output Paths Example 


