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Abstract
The CMS detector and other LHC experiments offer a

new challenge for the vertex reconstruction, the elabora-
tion of efficient algorithms at high-luminosity beam colli-
sions. This note presents a new approach, the deterministic
annealing. Deterministic annealing is a heuristic algorithm
which comes from information theory. The principle is de-
scribed in analogy to statistical physics. The simulated per-
formance for vertex identification, with the CMS detector,
is presented. The results are compared to those obtained
with the CMS reference algorithm.

INTRODUCTION
The vertex finding problem can be seen as a clustering

problem, in which each vertex is a cluster of tracks.
The vertex reconstruction can be decomposed into two
sequential steps, (i) the search of the best partition of tracks
(the clustering), and (ii) the fitting of each set of tracks
to a common vertex. The DA (Deterministic Annealing
[1]) approach to clustering has demonstrated substantial
performance improvements over standard supervised and
unsupervised learning methods in variety of important
applications including compression, pattern recognition
and classification, and statistical regression. For the vertex
finding, this method offers an important feature, the ability
to find vertices in a noisy environment without a previous
knowledge of the number of vertices to be found.

THE DETERMINISTIC ANNEALING
The main algorithm

LetX or {x} be a set of inputs (each x can be a represen-
tation of a track) and Y the best representation of X (it can
be the output of a fit). The set Y is often called the set of
prototypes {y}. In a probabilistic framework, the distortion
measurement can be defined as:

D =
∑

x,y

p(x)p(y|x)d(x, y(x)), (1)

where d(x, y(x)) is a distance between x and its associated
prototype y, p(x) is the weight of the input x and p(y|x)
the conditional probability of y given x. The smallest dis-
tortion search is recasted as that of seeking the distribution
p(y|x) which minimizes F

F = D − TS, (2)

where S is the joint entropy

S(X,Y ) = −
∑

x

∑

y

p(x, y) log p(x, y). (3)

T is a Lagrange multiplier called “temperature”, in anal-
ogy with statistical physics. Only the main parts of the al-
gorithm are given here, see reference [1] for more detailed
calculations. In order to determine the analytical form of
the association propabilities, the functionnal derivative of
F with respect to p(y|x) is calculated and gives the Gibbs
distribution when equals zero.

p(y|x) =
exp

(

−d(x,y)
T

)

Zx

(4)

with the canonical partition function

Zx =
∑

y

exp

(

−
d(x, y)

T

)

. (5)

These equations lead, minimizing F with respect to y, to
the prototypes positions

y =

∑

x xp(x)p(y|x)
∑

x p(x)p(y|x)
(6)

where p(y|x) is the Gibbs distribution given by (4).

Phase transitions
Last section shows how to obtain the positions of the set

of the prototypes Y . One of the main advantages of this
algorithm is that there is no need for a prior knowledge
of the good number of prototypes. The phase transitions
mecanism allows, starting from a unique prototype at high
temperature, to create new prototypes progressively while
temperature decreases, reaching critical temperatures along
the annealing schedule. First, the case of very high temper-
ature is considered. The association probabilities (4) are
uniform and the equation (6) becomes

y =
1

Nx

∑

x

x. (7)

The only prototype is then placed at the center of gravity of
the x distribution. Hence, at high temperature, the output
set collapses on a single cluster containing all the input
set with very uniform association probabilities. Instead of
considering the number of prototypes as being the number



of the searched clusters, lets’s consider that the number of
prototypes is indefinite and that the clusters are represented
by a set of effective prototypes. The number of clusters is
then given by the number of effective prototypes and the
number of prototypes never change. This definition allows
to consider variable numbers of clusters with a constant set
Y of prototypes. The phase of the system is described by
the number of effective prototypes.

We know from statistical physics that phase transitions
appears when the minimum of the free energy is no longer
stable when applying some perturbation on the system. If
Y + εΨ = {y + εψy} denotes the perturbed set of proto-
types, where ψy is the pertubation applied to the prototype
y, the condition for a phase transition is obtained by the
following requirement on the second derivative of the free
energy with respect to the perturbation strength ε:

d2

dε2
F ∗(Y + εΨ)|ε=0 = 0 ∀ Ψ. (8)

After some differentiations [1], a prototype y0 undergoes
a phase transition and splits if:

det

[

I −
2

T
Cx|y0

]

= 0 (9)

where Cx|y =
∑

x p(x|y)(x−y)(x−y)
T is the covariance

matrix of the posterior distribution p(x|y).
The critical temperature Tc is therefore determined as

Tc = 2λmax (10)

where λmax is the largest eigenvalue of Cx|y0
. In other

words, a phase transition occurs as the temperature is low-
ered to twice the variance along the principal axis of the
cluster. It can be further shown that the prototype splits
along the direction of its principal axis. An illustration of
this is given in Fig. 1: starting at high temperature (a), T
is lowered and phase transitions (shown in (b),(d),(e)) are
computed. At low temperature, the clustering stops and the
best solution is found (f ).
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Figure 1: Illustration of a deterministic annealing process
for the clustering of a set of points.

APPLICATION TO VERTEX FINDING
Choice of the event topology representation

DA has been implemented in the CMS reconstruction
framework ORCA [3]. The first step of the algorithm is to
characterize the system topology. The simplest approach is
to define the distance between an input and a prototype as
the minimal distance between the track and the prototype.
However, some tests performed with the Vertex Gun [4] fa-
cility (which provides a fully controled environment with
non-realistic vertices) showed a very poor efficiency with
this choice. It can be understood, looking at the event topol-
ogy: for instance, two unphysical vertices, distant from
one centimeter and containing respectively nines and four
tracks are presented in Fig. 2; the minimal distance d be-
tween tracks coming from different vertices is many orders
of magnitude smaller than the distance between the two
vertices, which is the real dimension of the problem. With
this definition of the input-output distance and without tak-
ing into account track errors, DA cannot be efficient.
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Figure 2: Example of the minimal tracks-prototype dis-
tance of two simulated vertices.

A possible solution to this topological problem is the
Apex Point [2] clustering approach where each track is
replaced by a point representative of the surrounding track
density. The principle of the computation of the apex point
for a track is the following:

• The points of closest approach of any surrounding
track to the selected one are calculated.

• Each point of closest approach is transformed into a
one dimensional point along the selected track trajec-
tory. It is affected with a weight equal to the inverse
of the distance between the two tracks.

• An Apex Finder [2] performs, for each track, the
search of the apex point(s). An example of concrete
implementation is the Minimum Two Values algo-
rithm (MTV). It determines the two neighbour points
with the largest weight sum and returns the weighted
mean value of their position. It is possible to search
for more than one candidate; in this case, the apex
finder is called the Multi State Apex Finder [2].



• The apex point is re-transformed into a 3 dimensional
point belonging to the selected track.

Implementation of the DA algorithm
The implementation of the vertex reconstruction with de-

terministic annealing on apex points consists in the follow-
ing steps:

• given a set of reconstructed tracks, all apex points are
calculated using the MTV [2] algorithm.

• DA is applied to the set of apex points. At the be-
ginning, a single prototype is associated to all apex
points. As the temperature is decreased by a defi-
nite cooling factor (see below), the conditions of phase
transitions are checked, and, if necessary, a new pro-
totype is created. At each step, assignment probabili-
ties and prototypes positions are updated. At the end
of the process, when the minimal temperature value
Tmin is reached, prototypes are fixed and apex points
are definitely assigned to one prototype if the weight
of assignment is higher than a cut value. Only pro-
totypes which have been associated to more than two
apex points are accepted.

• For each prototype, the set of associated apex points
is replaced by their corresponding tracks. Each proto-
type becomes then a vertex seed: a point associated to
a set of tracks.

• All vertex seeds are fitted.

With this implementation, DA reconstructs all vertices (pri-
mary and secondaries) at the same time, without a previous
knowledge of the number of vertex to be found.

SIMULATION RESULTS
Simulated vertices characteristics

Simulated primary and secondary vertices must be dis-
tinguished in order to be able to define the reconstruction
efficiency for both primary and secondary reconstructed
vertices. The ORCA [3] standard method is used:

• a reconstructable vertex is defined as primary if its
transverse position is compatible with the beam line
with a probability higher than 5%.

• a reconstructable vertex is defined as secondary if its
transverse position, is compatible with the beam line
with a probability lower than 1%.

Vertex reconstruction performance
In order to optimize the performance with respect to the

free parameters of the algorithm, DA has been tested in a
realistic environment of displaced vertices. The test frame-
work is the following:

• 4000 bb events (Et = 100 GeV, η < 1.4, without
interaction pile-up) have been generated with Pythia
[5] (version 6.215) and the detector response has
been simulated with the CMS 133 layout [6]. The
events reconstruction has been performed using the
ORCA 7 6 1 [3] software.

• For each event:
- tracks are reconstructed with the deterministic
annealing filter (DAF) [7]
- vertex seeds provided by the deterministic annealing
process are fitted with the Adaptive Fitter [9]

To evaluate the performance of the algorithm, the following
criteria and estimators are used:

• A reconstructed vertex is associated to a simulated
vertex if its purity, defined as the ratio of the number
of correctly assigned reconstructed tracks to the num-
ber of simulated tracks, is strictly higher than 50%.

• The vertex reconstruction efficiency is the ratio of
the number of reconstructed vertices associated to a
simulated vertex to the number of reconstructable sim-
ulated vertices. The vertex reconstruction efficiency is
estimated separately for primary and secondary ver-
tices.

• The vertex fake rate is the ratio of the number of non-
associated reconstructed vertices to the total number
of reconstructed vertices.

Perfomances study in a global vertex search
This section presents the results obtained for 4000 bb

events generated in the detector central region, without in-
teraction pile-up. The reconstruction is done globally, i.e.
all reconstructed tracks are taken into account by the vertex
reconstructor in order to find both primary and secondaries
vertices. The summary of the vertex identification perfor-
mance is shown in table 1 in comparison with the PVR al-
gorithm results. While similar efficiencies are reached with
both methods, the lower fake rate of 17% for the DA com-
pared to 44% with the PVR is a significant improvement.

Table 1: Vertex finding performances of the DA and PVR
algorithm in a global reconstruction setup

DA PVR
PV efficiency 92.75 ± 0.42 % 94.97 ± 0.35 %
SV efficiency 27.80 ± 0.43 % 29.19 ± 0.44 %

Fake rate 17.12 ± 0.42 % 44.01 ± 0.45 %

Primary vertex reconstruction study Resolution val-
ues are summarized in table 2. DA produces better resolu-
tions (19.5 µm in transverse plan and 23.5 µm on z axis)
than PVR: an improvement of 4 µm is obtained in trans-
verse plan and 6 µm on the z axis.



Table 2: Primary vertex reconstruction resolutions, with
DA and PVR.

DA PVR
trans. plane res. 19.5 ± 0.4 µm 23.5 ± 0.4 µm

z axis res. 23.6 ± 0.4 µm 30.2 ± 0.5 µm

Secondary vertex reconstruction study Resolutions
values are summarized in table 3. DA produces better res-
olutions (the mean value of sigma1 on the x and y axis is
equal to 90µm in transverse plan and 78µm on z axis) than
PVR (an improvement of 7 µm is obtained in transverse
plan and 30 µm on the z axis).

Table 3: Secondary vertex reconstruction resolution, with
DA and PVR.

2-gaussian fit DA PVR
σ1 in transverse 90 ± 5 µm 97 ± 4 µm
σ1 on z axis 78 ± 4 µm 110 ± 7 µm

σ2 (tails) transverse 400 ± 15 µm 445 ± 16 µm
σ2 (tails) z axis 425 ± 26 µm 500 ± 25 µm

Fake vertex reconstruction study A vertex can be
considered as fake for two reasons:

• if its purity is lower or equal to 50%, in this case the
vertex is called a real fake

• if it has been associated to a previously associated
simulated vertex, in this case the vertex is called a twin
fake

The table 4 presents the detailed ratio of real and twin
fakes for DA and PVR.

Table 4: Detailed contributions of real fakes and twin fakes
to the total fake rate

Real fake rate Twin fake rate Total fake rate
DA 15.3 ± 0.4% 1.8 ± 0.1% 17.1 ± 0.4%

PVR 37.2 ± 0.4% 6.8 ± 0.2% 44.0 ± 0.4%

The main fake production is the real fake production:
90% (resp. 84%) of fakes are real fakes for DA (resp.
PVR).

CONCLUSION
The deterministic annealing approach to the vertex find-

ing gives a powerful framework to improve vertex recon-
struction. In the first implementation, the deterministic an-

nealing algorithm provides the same efficiency as the clas-
sical PVR algorithm for global vertex reconstruction. DA
provides a fake rate which is about twice lower.

With the same vertex fitter, DA produces better spatial
resolutions than PVR for both primary and secondary ver-
tices and produces less distribution tails.

The limiting factor for this implementation of DA vertex
finding are apex point definitions (with ideal apex DA is
able to find up to 95% of secondary vertices and produces
a very low fake rate). To improve performance a possibility
could be to try another approach than the apex point one,
and to better account for track errors.

An other application could be the reconstruction of pri-
mary vertices with pixel tracks by deterministic annealing.
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