

Kinematic fit and decay chain reconstruction library for CMS

Kirill Prokofiev, Thomas Speer

Physik-Institut Universität Zürich-Irchel

Introduction

- Kinematic fit: through constraints derived from physics laws
 - improve the resolution of experimental measurements
 - test hypothesis
 - find unknown parameters
- Aim of the KinematicFit library for the CMS reconstruction framework:
 - Flexible framework with generic minimization algorithms which do not depend on constraints
 - Constraint chosen and implemented by the user.
 - Provide a navigable decay chain, representing the reconstructed physical process
 - stores results of all constraint fits performed during the reconstruction of the current decay
 - -access to the constrained and initial unconstrained information

The decay tree: KinematicTree

- Decay tree made of independent particles and vertices
- Tree is created from "bottom" to "top", i.e. from final state to the decayed particle
- Result of the reconstruction
 - represents one hypothesis
- Combinatorial search:
 - collection of trees can be created, each representing one possible combination of input objects

- State of any component can be changed (e.g. new constrained kinematic fit):
 - every component "remembers" the last constraint applied and its state before that constraint.

The decay tree: KinematicTree

- * KinematicTree has a graph-based navigation mechanism
 - Vertices are nodes
 - Particles are edges
 - Particle and vertices are reference counted
- Graph structure of the decay is not seen by user:
 - User can add and modify states, collect the information, navigate up and down the tree through public methods

The decay tree: particles and vertices

KinematicParticle

- Represents a particle during the kinematic fit.
- Stores the trajectory state, mass, charge, corresponding covariance matrix, etc
- Can be created out of any 4-vector based physical object:
 - → Reconstructed object (e.g. track with mass hypothesis, jets) by using adequate adapters contains link to the original object
 - -Decayed particle during fit: inferred from its decay products

KinematicVertex

- Describes a vertex in constraint fit.Stores the vertex position, covariance matrix, etc
- ▶ Both classes provide the link to the tree they belong to and store their previous states and last constraint applied
- ❖ In a KinematicTree, KinematicParticle and KinematicVertex are reference counted

The kinematic fit: requirements

- Several requirements drove the design of the kinematic fit library:
 - minimization algorithm must be independent of the constraints
 - flexibility to incorporate arbitrary constraints
 - different physics analysis with their different requirements
 - Addition of new constraint must be easy
 - -Developed and implemented by users and shared
- Minimization: Least Mean Squares (LMS) with Lagrange multipliers
 - analytical solution for linear constraints
 - constraints can be linearized

The kinematic fit: LMS minimization

* χ^2 minimization with the set of additional constraints $H(y_{ref})=0$, linearized (first order Taylor expansion) around some given point y_{exp}

$$\frac{\partial H(y_{\text{exp}})}{\partial y}(y-y_{\text{exp}}) + H(y_{\text{exp}}) = D \delta y + d = 0$$

- D: matrix of derivatives, one line per constraint equation (n_equations x n_parameters)
- d: vector of values of constraints
- Function to minimize with respect to (y_{ref}, λ) :

$$\chi^{2} = (y^{ref} - y) V_{y}^{-1} (y^{ref} - y)^{T} + 2 \lambda^{T} (D \delta y + d) \rightarrow min$$

- Minimization problem has an analytical solution, independent of the constraint equations
- ◆ Iterations may have to be performed if initial expansion point is far from minimum

Fitting algorithms: The constraints

- ◆ Each constraint equation adds one line into the D matrix, and one value into the d vector
- ◆ Implementation: one class for each constraint (inheriting from the abstract base class *KinematicConstraint*)

Each constraint class has to return the relevant lines for the D matrix and values for the d vector for a given set of parameters.

Several constraints can be used in the same fit:

Special class collects and assembles the contributions of the individual constraints into the *D* matrix and *d* vector

The kinematic fit: reconstruction strategies

Global strategy:

- Constrained fit of several particles with a vertex constraint and any additional number of constraints (e.g. constraints on subset of final state tracks: collinearity, back-to-back, invariant mass)
- All the constraints are applied together at the same time
- Vertex constraint adds $2 \cdot N^{tracks}$ to the user-specified constraints
- Fitter handles construction of *D* matrix and *d* vector (vertex+user constraints):

KinematicConstrainedVertexFitter::fit (vector<KinematicParticles>, KinematicConstraint)

The kinematic fit: minimization

Sequential strategy

- Constraints are applied sequentially, one after the other, after the vertex fit on the reconstructed mother particle.
- Sequential fit mathematically equivalent to global fit
- Unstable particles with significant lifetimes: reconstructed state have to be propagated inside the detector
- Vertex fit with any vertex fitter already implemented
 (e.g. Kalman filter, interfaced through *KinematicParticleVertexFitter*)
- Constrained applied on the mother particle: KinematicParticleFitter

The kinematic fit: KinematicTrees

- The "mother" particle is created form its decay products after global fit or vertex fit (sequential strategy)
- **♦** A new, fully consistent *KinematicTree* is then produced:
 - Trees of initial particles (if any)
 - Total χ^2 and number of degrees of freedom
 - Fitted vertex
 - Refitted input states
 - New "mother" particle:
 - momentum: sum of momenta of refitted decay products at vertex
 - **covariance** matrix: calculated from the full particle-to-particle covariance matrix taking all correlations into account
- Sequential strategy: constraint of the "mother particle" modifies the state
 - State of that particle in the tree is updated

The kinematic fit: parametrizations

- The analytical solution of the minimization problem does not depend on the parametrization of the input data
- Constraint equations must be derived in the same parametrization as the fit is performed
 - Global strategy: vertex and additional constraints have to be derived in the same frame - "quasi-Cartesian" parametrization is used
 - Sequential strategy: independent minimization for each constraint
 - → Different parametrizations for each fit/constraint
 - Some non-linear constraints may become linear after a change of parametrization.
 - →Implementation of the parametrization-independent version in progress
- ◆ The particle state is stored in a *KinematicState* class in a "quasi-Cartesian" parametrization: (position, momentum, mass)

Example: reconstruction of the decay $B_s \rightarrow J/\psi \phi$

- ♦ Reconstruction of the B_s in the decay $B_s \rightarrow J/\psi \phi \rightarrow \mu^+ \mu^- K^+ K^-$
- Constraints:
 - 4 final state tracks have a common vertex
 - Invariant mass of the muons is equal to the mass of the J/ψ
 - Pointing constraint: reconstructed B_s momentum points toward the primary vertex

(momentum vector parallel to the vector from the primary to the secondary vertex)

- Reconstruction without constraint:
 - Vertex reconstruction with Kalman filter, B_s parameters calculated from decay products.
- All test are performed with sample of 1000 simulated signal events

Example: reconstruction of the decay $B_s \rightarrow J/\psi \phi$

Residual of the $\mu^+\mu^-K^+K^-$ 4-track invariant mass with and without constraints:

Example: reconstruction of the decay $B_s \rightarrow J/\psi \phi$

Residual and pulls of the x-coordinate of the reconstructed B_s vertex

without constraints:

The stant of the s

with constraints:

K.Prokofiev, Th.Speer Universität Zürich

Global X pull

Further developments

- Parametrization-independent version to be finished in the near future.
- LMS minimization with penalty function could easily be integrated
 - Allows application of soft constraint:
 - -parameters are greater/smaller than a given value
 - -parameters are distributed according to a given PDF
 - Lagrange multipliers allow only application of "hard constraints" (parameters constrained to a given value).
- Other vertex reconstruction algorithms to be tried out in the sequential strategies: Robust filters, Gaussian-sum filter, etc...

Conclusions

- Flexible kinematic fit algorithm:
 - global and sequential strategies
 - constraints independent and easy to select and implement
 - any 4-vector like objects can be used as input.
 - parametrization independent
- Navigable decay tree to model the decay
- \bullet Tests on B_s decays: improvement of all reconstructed parameters
- Different reconstruction strategies tested: results in agreement within numerical precision