
Toward a Grid Technology Independent Programming Interface for HEP
Applications

S. Campana, A.Sciabà, Antonio Delgado Peris, F. Donno, P. Méndez Lorenzo, R. Santinelli
CERN, Geneva, Switzerland

Abstract

In the High Energy Physics community, Grid technolo-
gies have been accepted as solutions to the distributed com-
puting problem and several Grid projects have been de-
ployed. Unfortunately, the programming interfaces pre-
sented to the end user are often not uniform or provide dif-
ferent levels of abstractions. Furthermore, Grid technolo-
gies are constantly evolving and the changes in the pro-
gramming interfaces make it hard for the end user to build
Grid applications. After analyzing the existing program-
ming interfaces for the LHC Computing Grid middleware,
we identified some ways to provide high-level technology
independent interfaces. In this article, we will propose a
prototype for high-level interface to a security service, fo-
cusing on the authentication process.

INTRODUCTION

As high energy physics evolves, both theoretical and ex-
perimental studies become extremely computing intense
and demanding. One good example is the physics at the
Large Hadron Collider (LHC), located at CERN and start-
ing data acquisition in 2007. It is expected that the LHC
experiments will generate about 13 PB of data every year,
requiring the equivalent of 70000 of today’s fastest PC pro-
cessors.

To satisfy such demand for computing resources, the
community agreed on a geographically distributed Com-
putational Data Grid, which can integrate the capacity of
several computing centers into a virtual computing organi-
zation. For this purpose, the LHC Computing Grid (LCG),
especially aimed at HEP applications, provides a set of ser-
vices and interfaces, both in the form of command line
tools as well as Application Programming Interfaces (API)
in C, C++, Java, etc.

While the LCG middleware has been largely deployed
and is in production since quite some time, still few Grid-
enabled applications exist that exploit the full potential of
the Grid. In fact, one of the most serious difficulties that
a user encounters when developing a Grid application is
the lack of a consistent set of programming interfaces to
all Grid services. In addition, different implementations
of similar Grid services present different interfaces and do
not easily interoperate. One of the reasons is the rapid evo-
lution of the middleware, as new functionalities are often
added and the existing ones continuously improved. Be-
cause of the different nature of the different middleware
components, the interfaces presented to the end users are

highly heterogeneous, with APIs for different components
belonging to different layers of abstraction. In LCG-2 [1],
for example, there is no API to the information system
apart from the standard LDAP C API, which is totally dif-
ferent from the R-GMA API [2]: this prevents applications
from having a unified view of a mixed information system.
This case will be thoroughly discussed in another contribu-
tion [3].

To bridge the gap between the existing middleware and
the application level, a high-level technology independent
interface must be defined. Such interface should be placed
on top of the existing components in order to shield the
end user from the underlying technology and offer a well
defined common interface for the applications. In addi-
tion, the interface should be Grid-aware in the sense that
it should be able to dynamically adapt to the particular run-
time conditions in a heterogeneous environment like the
Grid.

A good example are the security services, for which a
standard, high-level interface to the various security mech-
anisms is also missing; we will focus our discussion on this
case, describing a prototype for a generic handshaking and
authentication interface, after having examined some exist-
ing ones.

EXISTING SECURITY INTERFACES

Several solutions have been adopted to implement secu-
rity in distributed computing environments: the Grid Secu-
rity Infrastructure (GSI) from Globus [4], which is based on
public key encryption and X.509 certificates and adopts the
standard GSS-API [5]; the EDG Authorization Framework
[6], which allows to secure Web Services with GSI-like cer-
tificates; in more specific contexts, like XRootd [7], Ker-
beros, host-based and user/password authentication have
been used; AFS security [8] itself may be used in a Grid. In
the following, we will examine the commonalities of these
mechanisms and see how they can be exploited to define
an abstract, object-based interface to allow developers to
interact transparently with many mechanisms.

The GSI model supports mutual authentication, using
the SSL protocol. Each peer owns a certificate and a pri-
vate key, issued by a certification authority (CA) trusted
by the other peer. The initiator sends its certificate to the
acceptor, which verifies the CA signature, and generates a
“challenge” to ensure that the initiator owns its private key;
the same is done in reverse to prove the acceptor’s identity
to the initiator.

This mechanism fits easily to the GSS-API concept,



where both peers, on the basis of their credentials, undergo
an exchange of data which requires a certain number of it-
erations (irrelevant to the user) and whose outcome, if suc-
cessful, is the establishment of a secure context. Once a
secure context exists, the parties may use it to encrypt the
exchanged data, or to guarantee its integrity. In fact, the
GSS-API paradigm seems to be generic enough to cover
all the functionalities commonly required in terms of secu-
rity in a Grid.

We also examined the XRootd security interface [7],
which uses Kerberos as mechanism and hides effectively
the complexity of the Kerberos API. At the basis of the in-
terface, there is the XrdSecprotocol class, which is instan-
tiated by a client to contain the information about the se-
cure context going to be created with a server. The method
getCredentials() generates a ticket for a given server; the
method Authenticate() is used by the server to decode the
client credentials, and if it succeeds, it informs the client.
Although this is done in a single pass, it is easy to adapt
the API to mechanisms that require many exchanges of
data, like in GSI, by calling repeatedly getCredentials() and
Authenticate().

The XRootd security API is much simpler than the GSS-
API, and can be used with any authentication protocol at
the application level. Nevertheless, it leaves to the user
almost no way to configure the properties of the authenti-
cation procedure, or to inquire the properties of the peers’
credentials or of the secure context. This is not a problem
if the Xrootd API is used in a particular application, where
every parameter can be defined statically in the code, but
it prevents from using the same implementation with an-
other application, which may require different choices of
the parameters.

SECURITY INTERFACE PROTOTYPE

In this section, we describe an attempt to define a
generic, object-oriented interface to a security service, with
references to possible implementations, and a typical use
case.

The basic idea is to allow an entity (referred to as the
client), given its credentials, to try to establish a communi-
cation with a peer (referred to as the server), giving a list
of security mechanisms in order of preference; the server
chooses one and both peers load the corresponding library,
where all the libraries share the same interface (see Fig. 1).

Authentication Interface

The class diagrams for the proposed interface are shown
in Fig. 2. The Principal class is intended to represent
a principal name, that is, a string which should identify
an entity, like username or service@hostname; this is in-
ternally translated to something understood by the un-
derlying security mechanism. A type can be given to
specify the kind of principal (a user, a host-based ser-
vice, an anonymous entity, etc.). Examples of principal

Figure 1: The relationships between client, server and the
proposed interface.

names are /C=CH/O=CERN/OU=GRID/CN=John Doe or
host@lxb0706.cern.ch.

The Credential class is meant to contain all the needed
information about the entity’s credentials (a proxy certifi-
cate, a Kerberos key, a password, etc.), the main data mem-
ber being a pointer to the memory location containing the
credential data. It is expected that the mechanism defines a
default location for credentials and, if none exist when the
constructor is invoked, they are created whenever possible
(e.g. prompting for a password). In other words, there must
be the concept of default credentials, which are created,
or used if already existing, when a constructor is called
without specifying a principal. Appropriate methods are
provided to extract the principal from the credentials, the
remaining lifetime of the credentials and if they are appro-
priate to initiate or to accept an authorization request.

The Context class is the core of the interface: it controls
the authentication process and contains the all information
about the security context, once this is established (for Ker-
beros, this would include the session key; for GSI, the cer-
tificate of the other party, etc.).

To perform the authentication, both peers instantiate
a Context object using some credentials (maybe the de-
fault ones), and the principal of the other peer for the
initiator of the authentication request. Then, the initia-
tor will invoke the sendRequest() method to generate the
data buffer to be sent to the other side, which will call the
recRequest() method to interpret the received buffer and
construct one to be sent to the client. The client will call
again sendRequest() using as input the buffer received from



Figure 2: Class diagram.

the server and producing another one to be sent. The ex-
change of data ends when the mechanism-specific authenti-
cation algorithm ends; at any moment, the boolean method
isGranted() tells if the authentication succeeded or not.

Before initiating the authentication request, the features
of the context required by the client can be set with the
setRequest(feature) method; such features may include the
ability to encrypt the data, mutual authentication, delega-
tion, etc. When the authentication succeeds, the method
isEnabled(feature) tells if a particular feature is actually
available. Finally, the methods encrypt() and decrypt() al-
low to use the context information (like a session key) to
encrypt and decrypt a buffer.

Handshaking Interface

Before the authentication can start, the two entities must
agree on a particular security mechanism; if they do so, the
appropriate plug-in is loaded by both sides and the authen-
tication begins. In this section, we propose an interface to
this purpose (Fig. 2).

A class named Handshake is used to manage the pro-
cess of choosing a security mechanism. The initiator must
call a constructor with a list of preferred mechanisms, and
similarly does the acceptor, with a list of supported mech-
anisms. The methods addMech() and delMech() can be
used to add and remove mechanisms from the list. The
initiator calls start() to prepare a buffer with the proposed

mechanisms to be sent over to the acceptor, which will call
answer() to interpret the buffer and create a new one with
the selected mechanism (or a subset of the initial mech-
anisms). The method getStatus() returns an enum type
whose value is ONGOING, SUCCEEDED or FAILED:
when it returns SUCCEEDED, the method getSelMech()
shall give the agreed mechanism. Finally, the method
loadMech() loads the dynamic library specific to the given
mechanism.

We wish to stress the fact that this interface does not im-
pose any restrictions on the number of iterations needed for
the handshaking. Concerning the handshaking algorithm
itself, at each iteration it needs only to remove at least one
mechanism from the list of mechanisms received from the
other peer in order to ensure convergence.

An Example Use Case

The most obvious use case foresees that a client wants to
establish a communication with a server knowing nothing
of the kind of authentication required (if any). It will open
a socket to a given port on the server host and start a hand-
shaking with the security mechanisms it is capable or will-
ing to use. If eventually the client and the server agree on
a mechanism, they load the corresponding library and start
the authentication process as already explained, provided
of course that they hold valid credentials. An interaction
diagram for this use case is shown in Fig. 3.



Figure 3: Interaction diagram for a typical use case.

Real Use Cases

Apart from the simple example of the previous sec-
tion, the security interface that we are proposing could be
adopted by current or future componentes of the LCG mid-
dleware.

The LCG data management tools could use data transfer
protocols (other than GridFTP which requires by definition
GSI) with whatever authentication mechanism (e.g. RFIO
with Kerberos or GSI).

In addition to that, the new LCG prototype for software
installation across sites [9] will benefit from the function-
alities offered by the security high level interface. In fact,
in such prototype, a client needs to interact with a server
both in insecure and secure way, depending on the action
it needs to perform; using the LCG security API, the client
could negotiate with the server at run time the type of secu-
rity context it requires, rather than having to run two sepa-
rates instances of the service, one in secure (GSI) and the
other in insecure mode.

CONCLUSIONS AND FUTURE WORK

We have presented a generic programming interface to
an authentication service for network connections in a Grid
environment, with the purpose to hide from the user the
specific security mechanism used. This high level API in
fact can accommodate quite different authentication meth-

ods (like password-based, Kerberos, GSI ...) and provide
a unique interface for the user. In addition, the interface is
grid-aware, in the sense that it able to dynamically load the
different components, depending on the runtime require-
ments. The final product should provide all the function-
alities of the existing interfaces described at the beginning
of this document (XRootd, GSS-API, etc ...) and should be
complete enough to satisfy the use cases mentioned above.
Our plans foresee to write a number of implementations,
starting with a password based and a GSI-like mechanism,
and investigate how it could be extended to other domains,
like authorization.

ACKNOWLEDGMENTS

This work has been founded by the Istituto nazionale di
Fisica Nucleare, Roma, Italy and the Ministerio de Edu-
cación y Ciencia, Madrid, Spain.

REFERENCES

[1] https://edms.cern.ch/file/454439//LCG-2-UserGuide.html/.

[2] http://www.r-gma.org/.

[3] A. Delgado Peris et al., “Experience integrating a General
Information System API in LCG Job Management and Mon-
itoring Services”, these CHEP proceedings.

[4] http://www.globus.org/.

[5] J. Linn, “RFC 2743 - Generic Security Service Application
Program Interface Version 2, Update 1”.

[6] http://edg-wp2.web.cern.ch/edg-wp2/security/edg-java-
security.html.

[7] A. Hanushevsky, H. Stockinger, “A Proxy Service for the
xrootd Data Server”, to be published on the Proceedings
of the First International Workshop on Scientific Applica-
tions on Grid Computing (SAG’04), Beijing, China, 20-24
September 2004.

[8] http://www.openafs.org/.

[9] R. Santinelli et al., “Experiment Software Installation experi-
ence in LCG-2”, these CHEP proceedings.


