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Abstract

When  dealing  with  the  concurrent  access  from  a
multitude  of  clients  to  petabyte-scale  data  repositories,
high  performance,  fault  tolerance,  robustness,  and
scalability  are  four  very  important  issues.  This  paper
describes the choices and the work done to address the
client side of high demand data access needs of modern
physics  experiments,  such  as  the  BaBar  experiment  at
SLAC,  and of  any  other  field  in  which a reliable data
access  is  a  primary  issue.  For  this  purpose  a  highly
scalable  architecture  has  been  designed  and  deployed
which  allows  thousands  of  batch  jobs  and  interactive
sessions to effectively access the data repositories with as
few fails as possible.

ROOT REMOTE DATA ACCESS
ROOT provides a remote file access mechanism via a

TCP/IP-based data server daemon known as rootd, and
its only purpose is to serve opaque data.  rootd and the
ROOT framework allow an analysis job to get access to
local  or  remote  files  in  a  transparent  way without  any
change to the source code.

In fact thanks to a plugin manager, that recognizes the
file URI format,  the proper class  TFile (for  local  file
access)  or  TNetFile (for  remote  file  access)  is

instantiated  and  returned  to  the  client  as a  file  handle.
Through this file handle the client can read or write slices
of data without knowing the actual physical location of
the  file  it  isaccessing.  Accessing  a  deployment  of
interconnected data servers suggests a different paradigm
which can be deployed or extended in order to satisfy the
heavy requirements of data analysis tasks. At the server
side,  rootd offers  the  solution  to  share  this  big  load
between many machines keeping the files on their local
disks,  while  at  the  client  side,  a  specialization  of  the
ROOT's data access classes can provide a way to access
the remote data which is transparent to the users of the
framework.

PERFORMANCE, SCALABILITY AND
FAULT TOLERANCE... 

If  the  rootd architecture  seems  suitable  for  the
purpose,  it  lacks some functionalities  which are crucial
for the construction of big processing farms, which must
be  able  to  give  data  processing  services  to  a  wide
community  of  users  with  high  availability  and
performances. Some of these needs are:
• multiple servers have to cooperate with the purpose

of:
➢ handling huge amounts of data, many times more

than the capacity of a single server;
➢ making  it  possible  to  keep  multiple  redundant

instances of subsets of the data;
• the client applications, given a file to access, should

not have to deal with the search of the right server to
contact;

• the server has to hide the client applications from its
underlying file system types, even if it manages one or
more tape units;

• the server has to manage in an efficient way choices
about the staging of files from the tape units;

• a  load  balancing  mechanism is  needed,  in  order  to
efficiently  distribute  the  load  between  clusters  of
servers;

Fig.1  Transparent local and remote file access
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• the  system resources  (sockets,  memory,  cache,  disk
accesses, cpu cycles, etc.) have to be used at the best,
at both client and server sides;

• a high degree of  fault tolerance at the client side is
mandatory,  to  minimize  the  number  of
jobs/applications  which  have  to  be  restarted  after  a
transient or partial server side problem or any kind of
network glitch.

The current version of  rootd doesn't support this set
of features; in particular it  is not designed to cooperate
with other rootd daemons; furthermore it uses a forking
mechanism  to  satisfy  multiple  concurrent  requests,
consuming  lots  of  system  resources.  Hence,  it  is  not
usable to satisfy loads of 500-1000 clients or more.

The  new  server  designed  by  the  BaBar  software
specialists to achieve all the requirements listed above has
been called xrootd (“eXtended” rootd).

As  TNetFile is  the  rootd's  client,  so  xrootd
needs  its  specific  client  that  supports  an  improved
communication protocol  [1]. This is the reason why, in
parallel with the development of the  xrootd daemon,
the TNetFile class has been extended, deriving from it
the  new  class  TXNetFile,  formerly  XTNetFile.
Some  of  the  design  choices  which  give  the  needed
functionalities are:
• the communication protocol, which embeds two kinds

of redirection mechanism:
➢ synchronous:  a  request  can  obtain  a  “redirect”

response,  which  means  that  the  client  has  to
disconnect, connect to another server and continue
the processing at the new site;

➢ asynchronous: a server can send, as an unsolicited
response, the “redirect” command to one or more
clients. This is useful if an administrator wants to
shutdown a machine, with a gentle way to make
all the clients continue their job;

•  an  architecture  in  which  servers  can  redirect  the
clients to other ones, which interact in order to:
➢ redirect clients where the files are;
➢ balance  the  load  of  multiple  servers  keeping

redundant data;
➢ give  to  the  clients  the  possibility  of  trying  to

continue their jobs by auto redirecting to another
server  if  the  former  server  crashes  or  becomes
unavailable;

• sophisticated  communication  policies  at  the  client
side, able to handle any kind of communication errors.
The failing requests are retried until:
➢ another working server is found;
➢ the same server becomes available again;
➢ a specified maximum number of retries is reached;

• multiplexed persistent connections. This means that a
single TCP connection from a client to a server can
carry  multiple  independent  data streams.  Also,  TCP
connections  are  persistent  for  a  short  period  if
connected  to  a  data  server,  for  a  long  time  if

connected to a load balancer. This helps in lowering
the  system  resource  consumption  and  the  network
overheads due to repeated multiple connections to the
same host.

RELATED WORK
Much work can be found in the literature about fault

tolerant  data  servers  and  their  performances;    it's  less
easy to find out works dealing with the robustness of the
communication  and  with  the  purpose  of  permitting  a
client  application  to  have  such  a  high  level  of  fault
tolerance in a highly loaded and available system.

Many works are available dealing with distributed file
systems, but we have to point out that the current feature
level  for  the  xrootd/TXNetFile  project  is  not  entirely
oriented  to  the  distributed  file  system  direction  at  the
moment. In fact, a consistent part of the design work for
distributed file systems lies in treating path and filename
semantics  and cache policies and coherency.  These are
some reasons why a distributed file system usually causes
a consistent network and cpu overhead when dealing with
read/write operations on the file it manages [2] [3].

A continuous load of a thousand clients per server is
not so usual in the distributed file systems world, but it
could  be  satisfied  by  using  particular  configurations.
Again, one of the problems which may arise is given by
the network overhead due to the synchronization of the
internal caches and buffers.  This can be a serious issue
when dealing with petabyte-scale data repositories and a
great number of clients which process the data.

However, such a perspective is common in many the
organizations that rely on massive data sharing, not only
depending from the ROOT package. For instance, such a
robust file server facility could be integrated in the many
Grid [4][5][6] initiatives that will support the analysis on
next generation physics experiments or other fields.

Scalability  is  another  critical  aspect  considered  in
literature.  Many  existing  systems  are  scalable  in  some
way, typically by passing through a system administration
approach (e.g.  mounting many remote directories under
NFS) or by implementing custom software layers giving
abstractions  for  multiple  servers  [7],  but  what  can  be
noted  is  that  very  often  the  scaling  measurements  are
done with numbers of 16 to 50 clients per server. What
can be  done if  we multiply by  100  the number  of  the
connecting  clients,  and  we  do  not  want  to  force
complicated  administrative policies and  create  potential
sources of  lockups? This is another reason for thinking
about  an architecture for  data access,  trying to  reach a
“nearly linear” scaling performance, limited only by the
data throughput and latency of both disks  and networks.

This  work  has  many  common  points  with  the  one
described about the Google File System [8]. A difference
with the Google File System is that it considers parts of
files (chunks) as its data unit, while xrootd has the single



file.  Also,  at  this  moment,  the  xrootd  system does not
have  a  mechanism  to  keep  the  coherence  between
multiple copies of a file which might be modified by an
application,  since  it's  not  needed  by  its  current
deployment.  It  seems  also  that  the  xrootd/TXNetFile
project put a bigger effort in refining the communication
policies and the resource consumption.

TXNETFILE – THE CLIENT SIDE
The base of fault tolerance and reliability of the system

is built  on some important features implemented in the
client and  defined  in  the  communication  protocol.  The
protocol defines the behavior of the client in the case of
explicit redirection requested by the server (for example it
can redirect somewhere else because it is going off-line
for  maintenance)  or  communication  error  (a  particular
data server crashed or unexpectedly closed a connection).
In  both  cases  the  client  has  to  come back  to  the  load
balancer  that  can  redirect  it  to  another  available  data
server.

Even in the case of absence of load balancer, a retry
mechanisms  ensures  that  if  the  communication  (or  a
crashed  server)  is  restored  soon,  the  client  is  able  to
recover its operations and the job won't loose any data.
Another interesting fault tolerant behavior is when a file
that  is  supposed  to  be  in  a  particular  host  has  been
actually  moved somewhere  else  (by  the  administrator):
again the protocol defines that the client has to go back to
the  load  balancer  and  send  a  “refresh” request  to  it  in
order  to  re-locate  the  moved  files  and  memorize  their
path through the data servers.

This client is composed by three layers with different
tasks:
• the  interface  layer:  here  the  TXNetFile class  re-

implements  all  the  virtual  methods  inherited  from
ROOT's TNetFile; another class TXNetAdmin has
been  built  at  this  level  in  order  to  perform
administration  operations  like file  copy/moving/stat-
ing/deletion,  file  retrieve  from  tape  systems,  file
system space check, etc.

• the high level communication layer: here the protocol
directives  are  implemented,  as  well  as  the  load

balancing  and  the  policies  related  to  the  fault
tolerance;

• the low level communication layer: here the protocol
packet  structure  is  known,  in  order  to  give  the
functionalities of:
➢ connection multiplexing;
➢ raw  data  receiving  and  un-marshaling  into  an

internal  message  stream,  in  a  parameterizable
asynchronous (using a queue and a reader thread
per physical connection) or synchronous way;

➢ raw data marshaling and writing to the connections
through a socket wrapper layer. It is such a kind of
physical  layer  that  performs  all  socket-related
operations like read/write, socket polling to handle
read/write timeouts, connection and disconnection,
connection timeout detection;

➢ Socket errors handling.

The first important feature of a physical connection is
the ability to handle connection timeouts (different than
that  one  implemented  in  the  TCP  stack)  and  also
read/write timeouts; if a time limit is reached for one of
the  connection  or  communication  primitives,  an  error
code is propagated to the higher levels in order to avoid
very long hungs of clients in those cases in which a server
become  unexpectedly  unreacheable  for  ethernet-related
troubles or is unable to promptly respond because it's too
much busy.

The Low-level communication layer
The low-level communication layer deals with logical

connections  and  physical  connections.  It  is  responsible
for raw data sending and receiving and is able to detect all
the errors directly related to the socket descriptors.

As previously mentioned, multiple logical connections
(each  used by a single instance of XTNetFile) can be
mapped  to  a  single  physical  connection.  This  kind  of
connection  multiplexing  is  managed  by  a  connection
manager object in this software layer.

The  physical  connections  also  handle
connect/read/write timeouts; if a time limit is reached for
one  of  the  communication  primitives,  an  error  code  is
propagated to the higher levels. This prevents the client to
be stuck for long periods if the network has problems or
the server is so busy that is unable to promptly respond to
the requests it receives.

Fig.2  Architecture overview
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The low level communication layer  can work in two
ways: synchronous and asynchronous. In the synchronous
way, the physical  TCP channel is  locked around  a full
request-response cycle. In the asynchronous scenario each
physical  connection  is  bound  to  a  thread  which  reads
messages  from  the  TCP  channel  and  put  them  into  a
queue. In this case, when an XTNetFile instance wants
to send a message to the server, it simply writes it to the
TCP channel; when it needs a response to its request, it
queries the queue for the next message belonging to its
logical connection. This way of working allows the server
to  send  unsolicited  responses  to  the  clients.  These
messages,  which  don't  pair  up  with  any  request,  when
received,  are propagated  up  to  the  higher  levels  of  the
architecture for proper processing.

The high-level communication layer

The high level communication layer has the purpose of
handling the content of the messages exchanged with the
server it is connected to. It also applies various policies to
any communication error reported by the lower level, and
take  the  proper  action.  For  instance,  if  a  client  first
contacted  a  load  balancer  that  redirected  it  to  a  data
server,  a  communication  error  (generated,  for  example,
by a socket-related error  or  a  by read/write timeout)  is
treated as a redirection to the former load balancer; if the
client didn't contact any load balancer, but went directly
to a  data server,  it  will  retry  a  connection to  the same
machine for a specified maximum number of attempts.

In  any case,  when a new working connection can be
established,  the  client  can  continue  the  processing
transparently, even if this implies a new login or a new
file open request at the new host.

All  these connection and communication  policies  are
handled  by  an  internal  communication  class,  called
XTNetConn,  instantiated  by  the  interfaces  of
XTNetFile/XTNetAdmin.  The protocol requests are
passed  to  a  unique  connection  manager  that  forwards
them to the logical/physical connections. To keep care of
the fact that many clients can use the same physical TCP
channel,  the  physical  channel  is  locked  around  writes,
otherwise,  in  the  case  of  a  multithreaded  application,
writes could overlap. 
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Figure 4 - State transition diagram for the fault tolerant behavior of a
client

Request
to send

Send/recv
interaction

Comm
error

Try asking
a redirector

LB
(recursion)

Error

New
host

OK
Command
processed

Failed

Max
attempts
limit

reached

Max
redir
limit

reached

Rebouncing

New 
attempt


