
XTNETFILE, A FAULT TOLERANT EXTENSION OF ROOT TNETFILE

Alvise Dorigo, Peter Elmer, Fabrizio Furano, Andrew Hanushevsky

Physics Department Galileo Galilei
Padova University and INFN Padova, Via Marzolo, 8 35131 Padova ITALY

(alvise.dorigo@pd.infn.it)
Princeton University, Princeton, NJ 08544 USA

 (elmer@slac.stanford.edu)
Università Ca' Foscari Venezia and INFN Padova, I-35131 Padova, ITALY

(fabrizio.furano@pd.infn.it)
SLAC, Stanford University 94025, USA

(abh@slac.stanford.edu)
Abstract

When dealing with the concurrent access from a
multitude of clients to petabyte-scale data repositories,
high performance, fault tolerance, robustness, and
scalability are four very important issues. This paper
describes the choices and the work done to address the
client side of high demand data access needs of modern
physics experiments, such as the BaBar experiment at
SLAC, and of any other field in which a reliable data
access is a primary issue. For this purpose a highly
scalable architecture has been designed and deployed
which allows thousands of batch jobs and interactive
sessions to effectively access the data repositories with as
few fails as possible.

ROOT REMOTE DATA ACCESS
ROOT provides a remote file access mechanism via a

TCP/IP-based data server daemon known as rootd, and
its only purpose is to serve opaque data. rootd and the
ROOT framework allow an analysis job to get access to
local or remote files in a transparent way without any
change to the source code.

In fact thanks to a plugin manager, that recognizes the
file URI format, the proper class TFile (for local file
access) or TNetFile (for remote file access) is

instantiated and returned to the client as a file handle.
Through this file handle the client can read or write slices
of data without knowing the actual physical location of
the file it isaccessing. Accessing a deployment of
interconnected data servers suggests a different paradigm
which can be deployed or extended in order to satisfy the
heavy requirements of data analysis tasks. At the server
side, rootd offers the solution to share this big load
between many machines keeping the files on their local
disks, while at the client side, a specialization of the
ROOT's data access classes can provide a way to access
the remote data which is transparent to the users of the
framework.

PERFORMANCE, SCALABILITY AND
FAULT TOLERANCE...

If the rootd architecture seems suitable for the
purpose, it lacks some functionalities which are crucial
for the construction of big processing farms, which must
be able to give data processing services to a wide
community of users with high availability and
performances. Some of these needs are:
• multiple servers have to cooperate with the purpose

of:
➢ handling huge amounts of data, many times more

than the capacity of a single server;
➢ making it possible to keep multiple redundant

instances of subsets of the data;
• the client applications, given a file to access, should

not have to deal with the search of the right server to
contact;

• the server has to hide the client applications from its
underlying file system types, even if it manages one or
more tape units;

• the server has to manage in an efficient way choices
about the staging of files from the tape units;

• a load balancing mechanism is needed, in order to
efficiently distribute the load between clusters of
servers;

Fig.1 Transparent local and remote file access

rootdrootd

NET

User ApplicationUser Application

TNetFileTNetFile TFileTFile
Plugin ManagerPlugin Manager

Local access

Remote access

• the system resources (sockets, memory, cache, disk
accesses, cpu cycles, etc.) have to be used at the best,
at both client and server sides;

• a high degree of fault tolerance at the client side is
mandatory, to minimize the number of
jobs/applications which have to be restarted after a
transient or partial server side problem or any kind of
network glitch.

The current version of rootd doesn't support this set
of features; in particular it is not designed to cooperate
with other rootd daemons; furthermore it uses a forking
mechanism to satisfy multiple concurrent requests,
consuming lots of system resources. Hence, it is not
usable to satisfy loads of 500-1000 clients or more.

The new server designed by the BaBar software
specialists to achieve all the requirements listed above has
been called xrootd (“eXtended” rootd).

As TNetFile is the rootd's client, so xrootd
needs its specific client that supports an improved
communication protocol [1]. This is the reason why, in
parallel with the development of the xrootd daemon,
the TNetFile class has been extended, deriving from it
the new class TXNetFile, formerly XTNetFile.
Some of the design choices which give the needed
functionalities are:
• the communication protocol, which embeds two kinds

of redirection mechanism:
➢ synchronous: a request can obtain a “redirect”

response, which means that the client has to
disconnect, connect to another server and continue
the processing at the new site;

➢ asynchronous: a server can send, as an unsolicited
response, the “redirect” command to one or more
clients. This is useful if an administrator wants to
shutdown a machine, with a gentle way to make
all the clients continue their job;

• an architecture in which servers can redirect the
clients to other ones, which interact in order to:
➢ redirect clients where the files are;
➢ balance the load of multiple servers keeping

redundant data;
➢ give to the clients the possibility of trying to

continue their jobs by auto redirecting to another
server if the former server crashes or becomes
unavailable;

• sophisticated communication policies at the client
side, able to handle any kind of communication errors.
The failing requests are retried until:
➢ another working server is found;
➢ the same server becomes available again;
➢ a specified maximum number of retries is reached;

• multiplexed persistent connections. This means that a
single TCP connection from a client to a server can
carry multiple independent data streams. Also, TCP
connections are persistent for a short period if
connected to a data server, for a long time if

connected to a load balancer. This helps in lowering
the system resource consumption and the network
overheads due to repeated multiple connections to the
same host.

RELATED WORK
Much work can be found in the literature about fault

tolerant data servers and their performances; it's less
easy to find out works dealing with the robustness of the
communication and with the purpose of permitting a
client application to have such a high level of fault
tolerance in a highly loaded and available system.

Many works are available dealing with distributed file
systems, but we have to point out that the current feature
level for the xrootd/TXNetFile project is not entirely
oriented to the distributed file system direction at the
moment. In fact, a consistent part of the design work for
distributed file systems lies in treating path and filename
semantics and cache policies and coherency. These are
some reasons why a distributed file system usually causes
a consistent network and cpu overhead when dealing with
read/write operations on the file it manages [2] [3].

A continuous load of a thousand clients per server is
not so usual in the distributed file systems world, but it
could be satisfied by using particular configurations.
Again, one of the problems which may arise is given by
the network overhead due to the synchronization of the
internal caches and buffers. This can be a serious issue
when dealing with petabyte-scale data repositories and a
great number of clients which process the data.

However, such a perspective is common in many the
organizations that rely on massive data sharing, not only
depending from the ROOT package. For instance, such a
robust file server facility could be integrated in the many
Grid [4][5][6] initiatives that will support the analysis on
next generation physics experiments or other fields.

Scalability is another critical aspect considered in
literature. Many existing systems are scalable in some
way, typically by passing through a system administration
approach (e.g. mounting many remote directories under
NFS) or by implementing custom software layers giving
abstractions for multiple servers [7], but what can be
noted is that very often the scaling measurements are
done with numbers of 16 to 50 clients per server. What
can be done if we multiply by 100 the number of the
connecting clients, and we do not want to force
complicated administrative policies and create potential
sources of lockups? This is another reason for thinking
about an architecture for data access, trying to reach a
“nearly linear” scaling performance, limited only by the
data throughput and latency of both disks and networks.

This work has many common points with the one
described about the Google File System [8]. A difference
with the Google File System is that it considers parts of
files (chunks) as its data unit, while xrootd has the single

file. Also, at this moment, the xrootd system does not
have a mechanism to keep the coherence between
multiple copies of a file which might be modified by an
application, since it's not needed by its current
deployment. It seems also that the xrootd/TXNetFile
project put a bigger effort in refining the communication
policies and the resource consumption.

TXNETFILE – THE CLIENT SIDE
The base of fault tolerance and reliability of the system

is built on some important features implemented in the
client and defined in the communication protocol. The
protocol defines the behavior of the client in the case of
explicit redirection requested by the server (for example it
can redirect somewhere else because it is going off-line
for maintenance) or communication error (a particular
data server crashed or unexpectedly closed a connection).
In both cases the client has to come back to the load
balancer that can redirect it to another available data
server.

Even in the case of absence of load balancer, a retry
mechanisms ensures that if the communication (or a
crashed server) is restored soon, the client is able to
recover its operations and the job won't loose any data.
Another interesting fault tolerant behavior is when a file
that is supposed to be in a particular host has been
actually moved somewhere else (by the administrator):
again the protocol defines that the client has to go back to
the load balancer and send a “refresh” request to it in
order to re-locate the moved files and memorize their
path through the data servers.

This client is composed by three layers with different
tasks:
• the interface layer: here the TXNetFile class re-

implements all the virtual methods inherited from
ROOT's TNetFile; another class TXNetAdmin has
been built at this level in order to perform
administration operations like file copy/moving/stat-
ing/deletion, file retrieve from tape systems, file
system space check, etc.

• the high level communication layer: here the protocol
directives are implemented, as well as the load

balancing and the policies related to the fault
tolerance;

• the low level communication layer: here the protocol
packet structure is known, in order to give the
functionalities of:
➢ connection multiplexing;
➢ raw data receiving and un-marshaling into an

internal message stream, in a parameterizable
asynchronous (using a queue and a reader thread
per physical connection) or synchronous way;

➢ raw data marshaling and writing to the connections
through a socket wrapper layer. It is such a kind of
physical layer that performs all socket-related
operations like read/write, socket polling to handle
read/write timeouts, connection and disconnection,
connection timeout detection;

➢ Socket errors handling.

The first important feature of a physical connection is
the ability to handle connection timeouts (different than
that one implemented in the TCP stack) and also
read/write timeouts; if a time limit is reached for one of
the connection or communication primitives, an error
code is propagated to the higher levels in order to avoid
very long hungs of clients in those cases in which a server
become unexpectedly unreacheable for ethernet-related
troubles or is unable to promptly respond because it's too
much busy.

The Low-level communication layer
The low-level communication layer deals with logical

connections and physical connections. It is responsible
for raw data sending and receiving and is able to detect all
the errors directly related to the socket descriptors.

As previously mentioned, multiple logical connections
(each used by a single instance of XTNetFile) can be
mapped to a single physical connection. This kind of
connection multiplexing is managed by a connection
manager object in this software layer.

The physical connections also handle
connect/read/write timeouts; if a time limit is reached for
one of the communication primitives, an error code is
propagated to the higher levels. This prevents the client to
be stuck for long periods if the network has problems or
the server is so busy that is unable to promptly respond to
the requests it receives.

Fig.2 Architecture overview

XTNetFile XTNetAdminClient(application)
Level

Communication
Level

XTNetConn
Connection Manager

Logical
connection

Physical
connection

Socket wrapper

High
level

Low
level

Operating SystemOperating System
TCP socketTCP socket Low level communication

(TCP/IP)

High level
communication

(protocol)

Operating SystemOperating System
TCP socketTCP socket

xrootdxrootd

Fig.3 - Connection multiplexing and path of a message

XTNetFile #1XTNetFile #1

XTNetFile #2XTNetFile #2
.
.
.

XTNetFile #NXTNetFile #N

XTNetConn #1XTNetConn #1

.

.

.

ConnectionConnection
ManagerManager

Logical Connection #1

Physical
connection

.

.

.
xrootdxrootd

TCP
channel

Logical to physical multiplexing
is handled by the connection
manager

XTNetConn #2XTNetConn #2

XTNetConn #NXTNetConn #N

Logical Connection #2

Logical Connection #N

Client'sClient's
requestrequest

The low level communication layer can work in two
ways: synchronous and asynchronous. In the synchronous
way, the physical TCP channel is locked around a full
request-response cycle. In the asynchronous scenario each
physical connection is bound to a thread which reads
messages from the TCP channel and put them into a
queue. In this case, when an XTNetFile instance wants
to send a message to the server, it simply writes it to the
TCP channel; when it needs a response to its request, it
queries the queue for the next message belonging to its
logical connection. This way of working allows the server
to send unsolicited responses to the clients. These
messages, which don't pair up with any request, when
received, are propagated up to the higher levels of the
architecture for proper processing.

The high-level communication layer

The high level communication layer has the purpose of
handling the content of the messages exchanged with the
server it is connected to. It also applies various policies to
any communication error reported by the lower level, and
take the proper action. For instance, if a client first
contacted a load balancer that redirected it to a data
server, a communication error (generated, for example,
by a socket-related error or a by read/write timeout) is
treated as a redirection to the former load balancer; if the
client didn't contact any load balancer, but went directly
to a data server, it will retry a connection to the same
machine for a specified maximum number of attempts.

In any case, when a new working connection can be
established, the client can continue the processing
transparently, even if this implies a new login or a new
file open request at the new host.

All these connection and communication policies are
handled by an internal communication class, called
XTNetConn, instantiated by the interfaces of
XTNetFile/XTNetAdmin. The protocol requests are
passed to a unique connection manager that forwards
them to the logical/physical connections. To keep care of
the fact that many clients can use the same physical TCP
channel, the physical channel is locked around writes,
otherwise, in the case of a multithreaded application,
writes could overlap.

REFERENCES
[1] Andrew Hanushevsky, XRootd Protocol Version 2,

2003, http://www.slac.stanford.edu/~abh/xrootd
[2] John H. Howard et al., Scale and performance in a

distributed file system,ACM Transactions on
Computer Systems, Feb, 1988

[3] Cary Whitney, Comparing Different File Systems'
NFS Performance. A cluster File System and a couple
of NAS Servers thrown in,The sixth SCICOMP
Meeting, SCICOMP 6 (Univ. of Berkeley), IBM
System Scientific Computing User Group, 2002

[4] Official European Grid web page (2004) http://eu-
datagrid.web.cern.ch/eu-datagrid/

[5] Official Grid-Egee web page (2004) http://egee-
intranet.web.cern.ch/egee-intranet/gateway.html

[6] Ian Foster, Grid Technologies & Applications:
Architecture & Achievements, CHEP'01, 2001

[7] F.Garcia, A.Calderon, J.Carretero, J.M.Perez,
J.Fernandez, A Parallel and Fault Tolerant File
System based on NFS Servers, Euro-PDP'03, IEEE
Computer Society, 2003

[8] Sanjay Ghemawat, Howard Gobioff, Shun-Tak
Leung, The Google file system, Proceedings of the
nineteenth ACM symposium on Operating systems
principles, ACM press, 2003

Figure 4 - State transition diagram for the fault tolerant behavior of a
client

Request
to send

Send/recv
interaction

Comm
error

Try asking
a redirector

LB
(recursion)

Error

New
host

OK
Command
processed

Failed

Max
attempts
limit

reached

Max
redir
limit

reached

Rebouncing

New
attempt

