
TXNetFile
A fault tolerant extension of ROOT TNetFile

ROOT integration
Entirely coded in C++, the client side was born as a ROOT extension,
officially available with the newest releases of ROOT 4. Also, a general
UNIX reference implementation exists and a Java one is in
development also for mobile devices.
TXNetFile is an extension of TNetFile, hence it's able to communicate
also with rootd servers in a fully transparent back compatibility mode.
Existing applications can switch to the new features by using it instead
of TNetFile.

Transparent for applications
What makes even easier for an application to use the features of
TXNetFile in conjunction with xrootd is the plugin architecture of ROOT.
Given an URL specifying a data access protocol, the Plugin Manager
provides at runtime the correct object to be used by the application,
which remains unmodified and unaware of the communication paths it's
using.

rootdrootd

User ApplicationUser Application

TXNetFileTXNetFile TFileTFile

Plugin ManagerPlugin Manager

Local access

Remote access

Net
Fault tolerance

Multiple servers, plus DNS aliases expansion make the
client able to find its way through a dynamical set of
servers. The client tries to connect randomly to the hosts
coming from the processing of an URI until one accepts it.

Communication robustness
Every connection or communication attempt has applied
a specified timeout. When it elapses, an error condition
is generated and handled internally.
Every low level communication error is handled internally.

Request
to send

Send/recv
interaction

Comm
error

Try asking
a redirector

LB
(recursion)

Error

New
host

OK
Command

processed
Failed

Max
attempts
limit

reached

Max
redir
limit

reached

Rebouncing

New
attempt

Alvise Dorigo – Peter Elmer ­ Fabrizio Furano – Andrew Hanushevsky – SLAC ­ BaBar – INFN Padova ­ 2004

Architecture
TXNetFile is composed by three layers:
- the interface layer: here the XTNetFile class reimplements all the
virtual methods inherited from ROOT's TNetFile; another class
TXNetAdmin has been built at this layer in order to perform
administration operations like file copy/moving/stating/ deletion, file
retrieve from tape systems, file system space check, etc.
- the high level communication layer: here the protocol directives are
implemented, as well as the load balancing and the policies related to
the fault tolerance;
- the low level communication layer: here the protocol packet structure
is known, together with the physical connection information, in order to
give the functionalities of: connection multiplexing, socket polling, raw
data sync/async reading, raw data writing, error handling.

TXNetFile #1TXNetFile #1

TXNetFile #2TXNetFile #2
.
.
.

TXNetFile #NTXNetFile #N

TXNetConn #1TXNetConn #1

.

.

.

ConnectionConnection
ManagerManager

Logical Connection #1

Physical
connection

.

.

. xrootdxrootd
TCP

channel

Logical to physical multiplexing
is handled by the connection
manager

TXNetConn #2TXNetConn #2

TXNetConn #NTXNetConn #N

Logical Connection #2

Logical Connection #N

Client'sClient's
requestrequest

TXNetFile TXNetAdmin
Client(application)

Level

Communication
Level

TXNetConn

Connection Manager

Logical
connection

Physical
connection

Socket wrapper

High
level

Low
level

Operating SystemOperating System
TCP socketTCP socket

Low level communication
(TCP/IP)

High level
communication

(protocol)

Operating SystemOperating System
TCP socketTCP socket

xrootdxrootd

Purpose
When dealing with the concurrent access from a
multitude of clients to petabyte-scale data repositories,
high performance, robustness, and scalability are very
important issues.
To address these challenges, xrootd and TXNetFile
have been designed. Such a technologiy can also be
used in any other field in which a reliable and scalable
data access is an important issue.
The current deployment allows thousands of batch jobs
and interactive data analysis sessions to effectively
access the data repositories of the BaBar experiment.
Hence, the built distributed data access systems are
highly robust and tolerant to communication troubles,
load balanced and scalable to an extent which allows
“no jobs to fail”, as long as the clients are able to find
their path over servers which may be overloaded,
restarted, become unavailable or prone to
communication errors.

Scalability
The implemented communication protocol makes
servers able to redirect clients to other ones. Hence, the
client can deal with a network of servers spanned
through multiple hosts, each partecipating in giving the
whole data access.
Clients are redirected where the files are, while the load
of multiple servers keeping redundant data gets balanced.
Multiplexed persistent connections and multithread
structure make this feasible through the lowering of the
needed system resources at the client and server side.

Security
The secure authentication client/server handshake
guarantees no use of the resources by unauthorized
users.
Allowed/denied domains for connection and redirection
make the system administrators able to limit the freedom
of the clients to connect everywhere, thus avoiding
potential DoS attacks to external sites and unpermitted
accesses to outer network domains.

