The High Level Filter of the

H1 Experiment at HERA

thanks to
R.Gerhards,C.Grab,S.Levonian,J.Martyniak, T.Mkrtchyan,C.Nowak,J.Nowak,
P.Fleischmann,M.Vorobiev

Alan Campbell CHEP'04

Outline
H1 Experiment
L45 trigger
New L45 scheme
Event Repository
Data Flow
Process and Corba Object Management
Monitoring - Online Histograms, Event
display, Emergency Messages, Output Log
Calibration
Trigger Algorithm Steering
Conclusions

Alan Campbell CHEP'04

THE

ERIMENT
AT HERA

H1 Collaboration at DESY, Notkestr.85, D-22687 Hamburg, Germany

30 GeV
positron
or
electron

Alan Campbell

L45

e"' or e” |

96ns » «

between beam crossings H 1 Ev e n.l. S

60Hz

1kB-1MB , ~100kB
average

~6 MB/s sustained average

L45 trigger

Full event reconstruction
Background rejection (eg vertex position) S.ror'age

Event Classification (assign to output stream) ®
Finders - select special physics channels < ~3 MB/s
Downscale soft physics ® RAW

Monitor & Calibration DST
RANDOM

LED...

Data taking in "runs” of few minutes to one hour.
A run has fixed trigger and readout settings.

Alan Campbell CHEP'04

L45 upgrade HERAIT
OLD

N\

VMEbus processors Networked PCs
standalone programs

-Same platform as offline computing (identical software) -resources can be shared
-lower cost -expandable network & cpu -same framework for reprocessing

Approach: standards based event distribution framework
CORBA for data and control -> multiple language bindings
C++/Fortran/C -> link binary code from H1 standard libraries
Python -> control & setup scripts
Java -> histogram collection & display, run control

Investigations showed that data transfer via CORBA is fast (>7MB/s on 100Mbit network)
with <1ms/call overhead => transfer in chunks of ~500kB.

Alan Campbell CHEP'04

writer tasks

Event Repository - 1.Basics

Event Repository FIFO

[]

[
L]

write event
write sequence

a first-in first-out event store

read and write similar to sequential file access

events stored in repository as suitably sized sequences
sequences are created when single events are inserted

no expensive data copy required
used both for event collection and distribution

reader tasks

>
I
-

read event
read sequence

only entire sequences are transferred between repositories via network
multiple writers & readers simultaneously - multi-threaded orb

Alan Campbell CHEP'04

Event Repository - 2.Synchronisation

Event Repository FIFO

% 9 =

o>
e
-

Barriers

seperate event flow into blocks (eg runs), events stay within a block

all output events in a block arrive before any event from the next block
events may be dropped from (eg trigger reject) or added to (eg extra
calibration data) a block

barriers are eg run start/stop, file begin/end, nth event calibration trigger

Barriers assigned incremental number when first written to its source repository
all writers must write a barrier before any readers can read it
writers write event sequences in front of a barrier which they have not yet written
as soon as all writers have written a barrier it becomes readable
barriers are not removed until read by all readers
a reader can read sequences behind barriers he has already read
each barrier is distributed to all repositories
repositories must be large and barriers infrequent to not hinder data flow
Alan Campbell CHEP'04

Event Repository - 3.Linking

(R

>

Insertion into data flow - 3 step process @

(R

\

tell sink repository we will deliver front-most non-readable barrier
tell source repository we will read from front-most barrier

tell sink we will deliver only from barrier number given by source repository

OO

Similar care needed to detach from flow normally or abruptly

Alan Campbell CHEP'04

Event Repository - 4.Barriers with Data

Barriers are "broadcast" to all repositories and mark timestamp in dataflow.
Data Attached to barriers provides distribution of constants.

Event Repository FIFO

]

ensures same constants for same block
on all processing nodes
avoids multiple access to database

timely distribution of run-start records
ie run settings

Persistent Barrier Cache

When barrier with data is removed from
repository it enters a cache, replacing last
barrier of this type.

New readers first read the barriers in the
cache to obtain all current constants.

Alan Campbell CHEP'04

Overall Dataflow

O _—0_0O) =0 _

1| SRR HNER|E

IIEE L] B il o —
EDH

I | ‘ A [

Barrier insertion

L45 process

reads eventwise from input repository on same machine
copy of event kept until new event requested

no event lost in case of L45 process abort

|45const - extra barrier creation process
allows for multiple input processes
inserts additional barriers in data flow if new constants available

Alan Campbell CHEP'04

Controller

Slave
Controller

Master
Controller

spawns

Controller - process creation and corba object handling (python & omnipy)
Master controller

starts slave controllers via ssh

provides global process ids

maintains lists of object references eg of event repositories, histogram servers
maintains list of repositories and their reader/writers

Slave controllers start processes for master, check & restart processes
controllers are restartable

Logger

C++ thread reads STDOUT
collects lines
transfers to logger via corba

— logger process dumps to disk

Alan Campbell CHEP'04

ubr, version 1.1. sl beas]

([J o 7 i Help
Online Histograms e mammr weoee
= = LAr Calo EM channel energy distributions -3
|

BBE = wheel Ofsection O CB1E = wheel 1fsection O

922

IV EEEEEEEFFEE
oopgocoolzs

Histogram
Display

Corba thread C++ calls fortran histogram package (LOOK)
LOOK modified to add recursive mutex

Histogram display fetches and sums data from all processes(Java, JAS, corba)
New: web access via corba web server in python (omnipy,biggles,svg)

Online Event Display

rare events may be selected for the online event display

selection criteria are sent as 'constants' via 145const

events selected in L45 are written as special records

latest event is kept in logging process and fetched for display via corba

Alan Campbell CHEP'04

ElE] 2 s

l {1 l
[

L I
%ﬁ@

L45 process
outputs ntuples of data needed to compute calibration
Barrier insertion dumps to data stream as special records

Update Compute
Constants Constants

I45const - inserts new constants barriers on run start if available on disk
or immediately on request via corba

Alan Campbell CHEP'04

Trigger Algorithm Steering

algorithm defined in text
stored in database

"MODULES; * definition of processing modules
'L1=L_RNDM,L_L1_L5SKIP;" variables which can be calculated by module
'"QT=I_QT_NHITCRJE,#L1;" dependencies between modules
'"CJC=I_CJC_NUPSTRTRACK, #QT;"'

'L1RESET: ' definnition of ftrigger masks

'L_L1_ALLST = 0-127;"
' TRIGGER: statements executed until accept/reject
'+ Accept Very High ETJET events;’ modules called only if variable needed

'L4_HS_VHETJET = L_L1_VHETJET & statement aborts if a subcondition is false
R_CJC_ZVX>-60. &

R_CJC_ZVX<110. &' if all subconditions true action taken

R_ENFL_ETJET>20.0 &' ACCEPT/REJECT/RESET_MASK

Z I eBITon o RESET_MASK is reject only if no bits remain

:ACCEPT:0. 00: CONTINUE; ' CONTINUE specifies test statement

Tdkdhdd reject Obvious background Tk dhd ek a0 S oo .
T T e T, T AR . fraction specifies monitor/scaledown

R_CJC_ZVX>100.0:RESET_ALLST:0.1; histograms per statement records result

"ACCEPT; '
'"HIREC :1.0;' extra processing if accept

'"HISTOGRAMS ; '

'MAIN 50,0.,5000000. # 1
'QT 25,0., 50000.# 1000,0;
'11 25,0., 100000.# 2000,0; variable histograms

'"CJC 50,0.,2500000.# 4000,0; variable histograms for individual
"R_FNC_ESUM = L4_EFS_FNC_Q2 :60, 10.,1210.;" statements

'R_CJC_ZVX 200,-250.,150. ;"

03
,0; module timing histograms
, 0

Alan Campbell CHEP'04

Summary & Conclusions

H1 Experiment High Level Filter

* Event Repository organises data flow
and synchronisation

* multithreads overlap data transfer and
processing

* successful mix legacy FORTRAN and
with C++

* very stable system

* CORBA gives language & network
independence

* entirely open standards, open source

Alan Campbell CHEP'04

