
CDB - DISTRIBUTED CONDITIONS DATABASE OF THE BABAR
EXPERIMENT

I.A. Gaponenko*, D.N. Brown#, for the BaBar Computing Group,

LBNL, Berkeley, CA 94720, USA

Abstract
This document presents CDB – Distributed Conditions
Database of the BaBar Experiment [1]. CDB is the second
major iteration of the database deployed in BaBar for
production use as of October 2002. It replaced the
original version of the database [2] used through the first
three years of the data taking. The new design and its
implementation are aiming at performance and scalability
limitations of the original database, as well as at emerging
challenges of a distributed data production and analysis
system [3] of the Experiment.

INTRODUCTION
The Conditions Database is used in the BaBar

experiment to store time varying data about hardware and
software environment (hence: conditions) in which
detector data (or events) get acquired, modelled,
processed and analysed. The kinds of information stored
in the database include: detector alignments, various
constants, electronics wiring maps, calibrations, to count
just a few. The same database (both software and the data)
is used through all distributed events processing chain of
the Experiment [3], both by ON-LINE and OFF-LINE
systems. Database update patterns differ from an
application to an application. For certain types of
conditions (for example, calibrations), the contents of the
database gets updated for every run, meanwhile for others
(alignments, constants) - it only happens once a month or
even once a year.

Up to date, the database has gone through two major
iterations. The original version of the database was
commissioned by May 1999, by the time when BaBar
started data taking. The original database was
implemented using Objectivity/DB [4] as an underlying
persistent technology. During its life span lasted through
June 2002 that database saw a number of evolutionary
improvements not touching foundations of its design. By
the year of 2001 it became obvious that, mostly due to
limitations of the original design, the evolutionary
approach won’ t allow further development of the product
to address emerging challenges of the Experiment. In
particular, one of the major issues was that the database
was not specifically intended to be used in a distributed
environment [5]. The second major problem was the
database API, which was exposing internal

implementation of the database. And finally, we hit a wall
of the performance and scalability limits [5, 6].

The second generation database (its codename was
CDB) was designed, implemented and tested within one
year by the summer of 2002. A migration of clients’ code
to the new API was accomplished during the accelerator
shutdown in summer 2002. CDB was finally deployed for
production use by October 2002.

CDB introduced a new conceptual model of the
Condition Database and a brand new API. CDB was also
designed as a distributed database from the ground up.

To facilitate a smooth migration of the BaBar
experiment from the old database to the new one, CDB
was first implemented using the same persistent
technology the original one was based upon –
Objectivity/DB. That allowed reusing an existing user-
defined schema and persistent objects stored in the
database. Though, these objects had been re-clustered in
the new database to comply with new distributed model
of CDB.

AN OVERVIEW OF CDB

Distributed Database Design
Perhaps a biggest challenge in building a data

processing system of a contemporary HEP experiment is
how to make it working in a (quite often geographically)
distributed environment. In a specific context of the
Conditions Database it means three major problems:

• The contents of CDB may be simultaneously
updated in disjoined database installations.
Hence we have a problem of a consistent
merging of new data into the rest of the database
to avoid problems like namespace conflicts.

• The data are also used in the same distributed
environment. Each specific database installation
may not have all the data known in the
distributed database, neither these data should
necessarily be up-to-date, but we do expect the
right data to exist at a point of its use. This leads
us to two problems: availability (of data) and
usability (of a specific installation).

• Synchronizing the contents of multiple database
installations is another issue. That’s about a
dynamics of a living distributed system. To
accomplish this goal the corresponding protocols
and (problem domain specific) data flow
scenarios have to be envisioned.

*electronic address: IAGaponenko@LBL.Gov
#electronic address: Dave_Brown@LBL.Gov

A cornerstone concept of a distributed model of CDB is

the origin. CDB is made of unique database installations
each associated with its native origin (see Fig. 1).

Figure 1: Distributed model of CDB.

Origins provide a scope for persistent data originating
at the corresponding database installation. These data
include: conditions, partitions and views (see Fig. 2).

Data associated with a specific origin can only be
updated at a database installation of the same origin. It
means that origins (not database installations!) own their
data. A particular database installation may also have data
coming from others, or so called foreign origins. That
data are always available in read-only mode.

Figure 2: Scope and ownership diagram.

In addition, as it’s shown on the Figure 1 above, CDB
allows establishing exact copies (mirrors) of the
corresponding unique database installations (reference).
Each mirror is associated with the same origin as its
reference. However, all the data in a mirror are only
meant to be used for reading. The first application for
mirrors is to resolve performance bottlenecks in highly
parallel processing scenarios, for example, when multiple
physics analysis jobs are using the same type of a
database installation. The second target is geographically
distributed copies of the same installation (the above

mentioned example of analysis jobs can also be a good
example).

2-D Space of Conditions
For individual conditions (a specific CDB term for

calibrations, alignments, etc.) CDB introduces a simple
geometric model in which conditions are containers
providing 2-D space of insertion and validity timelines for
condition objects (see Fig. 3).

Figure 3: 2-D model of a condition.

Each object is shown at the picture as a bar. It has an
interval of validity (validity interval) and an insertion
timestamp. These objects representing original user
intentions are known in CDB as original intervals.

Objects get resolved from certain point of the insertion
timeline, which is known as revision. Revisions separate
what was stored in a condition before from what may be
stored after. The objects lookup process goes from the top
(of a revision) down to the bottom (of the condition). The
first object intersected is the one reported. A client gets
only a “visible” part of the found original interval. That
part is known in CDB as visible interval. Visible intervals
are associated with revisions.

Revisions must be created before to use them. They’ re
identified either by their user-assigned names or by their
timestamps at the insertion axis. Each condition always
has a predefined revision – the topmost one. A timestamp
of this revision is the +Infinity on the insertion time axis.

The above shown picture also provides an illustration
of how three revisions can be used to access objects
produced after three stages of an event reconstruction.

Distributed Conditions and Partitions
Sometimes it’s required that different validity ranges of

the same condition were simultaneously updated in two or
more disjoined database installations. That poses a
problem of merging new condition objects stored in these
installations. This kind of conditions represents so called
distributed conditions. A good example of this can be
“rolling calibrations” in the BaBar Experiment [7].

A CDB way to address this requirement is to define
non-overlapping subspaces in 2-D space of these
(distributed) conditions and assign each subspace to a

dedicated origin. The corresponding database installation
will be allowed to put new objects into the subspace.
These subspaces are known in CDB as partitions. All
distributed conditions are partitioned in the same way.
The MASTER origin has a special data structure
(“Partitions Layout”) to maintain partitions.

Partitions are owned by origins. An example of using
partitions to produce calibrations for initial reconstruction
and a subsequent re-reconstruction is shown
below:

Figure 4: Partitions.

Once created a partition is assigned a sub-range of the
validity time. And it’s also “open” from the top meaning
that new objects can be added into its subspace. When the
corresponding activity (reconstruction) is over then the
partition can be “closed” , so that new partition(s) can be
created above it.

For normal client applications reading from the
database, partitions are transparent. Also, in distributed
conditions, the scope of revisions is restricted to condition
and a partition.
Views and Configurations

In order to insulate client applications from knowing
exact details on how conditions are stored in the database,
and to add extra flexibility for the database management,
CDB has two-layered namespace for conditions:

Figure 5: Namespaces for Conditions.

These two layers are:
• virtual represented by views
• physical represented by physical conditions

The virtual layer of views is the one client applications
directly encounter when dealing with the database. A view
provides a hierarchical namespace for conditions as well
as configurations for each condition in the namespace. A
role of configurations is to represent the corresponding
physical conditions in views acting like symbolic links
and also to put restrictions on how the physical conditions
can be used through the views. In the latter case a
configuration uses the previously described mechanism of
revisions to specify which revision (partition) should be
used when looking for objects at a condition. The general
assumption is that an expert or a database contents
manager would prepare a view with consistent
configurations of conditions, give it (the view) a name
and let users to use the view without worrying about
knowing explicit secondary keys (views) for each
condition.

Views are owned by origins. In the scope of its owner
origin, each view has a name and an identifier. The most
recently created view of the native origin of a database
installation becomes a default view of the installation. The
default view is the one picked by applications if they
don’ t specify explicitly which view they’ re interested at.
This mechanism allows to specialize database
installations for specific uses (for example, ON-LINE)
rather than configuring applications.

On the other hands, the lower physical layer is
organized in most optimal way for managing and
distributing the contents of conditions. The conditions at
this layer come from various origins.
State Identifier

Another new feature introduced in CDB is state
identifier. It’s a small (64-bit) data structure uniquely
describing a state of the database as it’s seen by a user
application. The state identifier can be used as a CDB-
wide secondary key (in addition at the validity time) for
the contents of the database. In BaBar, a stack of
identifiers is stored in an event header. A new identifier
gets added to the stack every time the event undergoes
through a modification (for example, re-reconstruction) to
record a configuration (and the contents) of CDB used for
the modification. This information can be used to recover
the state of CDB at each stage of the event’s life.

API
The new CDB API reflects new conceptual model of

the database. It’s mostly (persistent) technology neutral,
allowing multiple underlying implementations to be used
by an application. The persistent technology specific
extensions of the API, which are needed to handle user
defined payload, are confined within well controlled
converters and factories.

USING CDB IN BABAR
At a time when the current document was being

written, there was just one implementations of the CDB,
which was using Objectivity/DB as an underlying
persistent technology. There is also an ongoing work on
implementing CDB in MySQL [8] and ROOT I/O [9].

The schema of the Objectivity/DB based CDB includes
about 50 persistent classes representing metadata and over
400 unique classes representing user defined payload (the
actual contents of the database). There was also a
successful effort to provide users with predefined table-
like persistent containers with a transient interface.

The total amount of data in the database is over 32 GB.
There are 8 core origins, 40 views, 20 partitions and about
2000 of physical conditions.

CDB Installations
Here is a map of the distributed database, in which

database installations are grouped into four major
applications:

Figure 6: Map of the Distributed CDB.

The overall number of installations exceeds 40. All core
installations are located at SLAC. The cross-database
synchronization tasks for all core installations and for
many reference ones are fully automated.

Problems
A biggest problem inherited by CDB from the first

generation Conditions database was a complex user
defined schema (400+ classes). At that time there was a
very little control of how conditions developers did the
data modelling. Obviously many use cases could easily be
solved with predefined containers (like tales). This
schema significantly complicates any implementations of
the database on non-OO based persistent technologies
(that’s why ROOT I/O has been chosen to replace
Objectivity/DB for the user defined schema and database
payload).

As to new problems, then it wasn’ t a surprise that a
richer logical model has come with a price:

• non-negligible database management efforts
are put into synchronizing distributed database
installations, even though the Distributed
Model of CDB has the corresponding
provisions

• database contents management (configuring
views) requires more attention from conditions
developers and database administrators

The latter sometimes becomes a source of troubles
when mistakes are made at database configurations. A
general solution to the last two problems is an automation
of as much database management and data distribution
operations as possible to eliminate a “human (mistake)
factor” .

CONCLUSIONS
A major rework performed on the database took 15

months from its start to the final deployment in October
2002. CDB got an advanced conceptual model in its
foundation as well as a brand new API. The performance
and scalability limitations of the original database were
also resolved. The subsequent two years of using CDB in
production have proven the correctness of the new model.
Valuable lessons have been learned in a course of using
and developing the Conditions database for the
Experiment.

The most important outcome was that CDB has
significantly extended BaBar’s ability to process event
data in a distributed realm of the Collaboration.

REFERENCES
 [1] D. Boutigny et. al., “BaBar Technical Design

Report” , SLAC-R-95-457.
 [2] I. Gaponenko, et al., “An overview of the BaBar

Conditions database” , CHEP 2000, Padova, Italy,
January 2000.

[3] P. Elmer, et al., “BaBar computing – from collisions
to physics results” , CHEP 2004, Interlaken,
Switzerland, September 2004.

[4] http://www.objectivity.com
[5] I. Gaponenko, et al., “The BaBar database:

Challenges, Trends and Projections” , CHEP 2001,
Beijing, China, September 2001.

[6] J. Becla, I. Gaponenko, “Optimizing Parallel Access
to the BaBar Database System Using CORBA
Servers” , CHEP 2001, Beijing, China, September
2001.

[7] J. Ceseracciu, et al., “Distributed Offline Data
Reconstruction in BaBar” , CHEP 2003, San Diego,
USA, March 2003.

[8] http://www.mysql.com
[9] http://root.cern.ch

