" / . LA/ -
(U / Ul I ©

Grid Informat

[} - L]

1954-2004

ion and Monitoring Systém using

XML-RPC and Instant Messaging for DIRAC

lan STOKES-REES Andrei TSAREGORODTSEV and
University of Oxford Vincent GARONNE
Centre de Physique des
Particules de Marseille

Background

The DIRAC system developed for the CERN LHCb
experiment is a grid infrastructure for managing generic
simulation and analysis jobs. It enables jobs to be
distributed across a variety of computing resources, such
as PBS, LSF, BQS, Condor, Globus, LCG, and individual
workstations.

A key challenge of distributed service architectures is
that there is no single point of control over all
components. DIRAC addresses this via two
complementary features: a distributed Information
System, and an XMPP (Extensible Messaging and Presence
Protocol) Instant Messaging framework.

Lightweight Information Service

Service
XML-RPC

c
(-]
=
[}
£
=
£
(=
=1

)i ServiceB &

® : DIRAC Sites
5 1 DIRAC via LOG
& - MBRAC and LOG Sites o

Service C

Problem

Every service and agent needs a combination of:

» local/custom configuration
« global shared configuration
» knowledge of other services configuration

However services and agents can be started, stopped,
added, removed, and reconfigured randomly. How does
one component learn about the other components, and
share its own configuration? This is the classic “Name
Service” problem, addressed in other contexts by DNS,
LDAP, and UDDI, to name a few.

Solution

A simple information model provides grouped
name/value pairs. This is accessed via an API to a single
in-memory Information Service object. This object
transparently searches for a requested item until found,
starting from the local settings (loaded from a file), then
trying in turn a list of alternative information sources,
which may be remote services or local files.

The local Information Service may cache results from
requests to remote sources, or perform batch fetches to
improve performance. As well, a fail-over mechanism
provides redundancy.

[1 bnt s2] « [Section |
Modul es = JobAgent

| Option |
[Agent |
LogFile = agent. | og
LogCQut put = stdout,file
LogLevel = DEBUG

i n2p3. fr/ pbs-short
Test Modul ar Agent

[JobAgent |
CEUni quel ds
Agent Nane

Backdrop Particle Paintings created by artist Tom Kemp September 2004 http://www.tomkemp.com

GridPP

UK Computing for Particle Physics

XMPP-Core IETF Draft

Server: routes and buffers XMPP-IM IETF Draft

messages, handles
presence probes

Client: thin client,
only responsible for
processing incoming

messages

DB: Stores user
profiles and rosters

1954-2004

Problem

In a grid environment it is difficult to locate remote
services and running jobs, as the grid topology is
dynamic. Agents, Services, Users, and Jobs are
constantly coming online or going offline.
Furthermore, many grid enabled nodes are protected
by firewalls, making “inbound” access difficult or
impossible.

A level of indirection is required to enable
components to form ad hoc networks, allow dynamic
addressing for secure remote access, and buffer
communication to increase robustness.

)Jabber

Grid Monitoring with Instant Messaging

Solution

XMPP (Extensible Messaging and Presence Protocol), the
IETF standardisation of the Jabber Instant Messaging
Protocol, addresses many of these problems.

Ad hoc networks can be formed by creating a “chat
room” which then acts as a message broadcast hub.
Components connect to the chat room and then listen to
broadcast messages or post messages. Users can also
connect to the chat room to track messages and provide
monitoring of component state, with only the knowledge
of the messaging hub (chat room), rather than the names
of specific components.

Roster lists show the names of "subscribed” components,
either tracked specifically by a User, or who are members
of a chat room. The presence mechanism is utilised to
report the state of a component.

XMPP servers allow for message logging which can be
utilised for provenance, accounting, and debugging.

Dynamic addressing is handled by JIDs (Jabber IDs),
allowing a component to be contacted regardless of
where it "actually” exists. This enables components to
migrate between hosts, and for late binding of a
component to a host but early binding of a component to
a JID.

Message buffering by the XMPP server provides fault
tolerance in the presence of network, system, or service
timeouts, failures, or restarts. Asynchronous messaging
also improves service decoupling by removing blocking
which occurs with synchronous procedure calls.

Message Types

<presence> availability and status
<iq> pull based RPC mechanism
<message> push based general communication
eInstant message
*One to one chat
«Group chat (broadcast)

T test Room
Subleck
Service_JobReceear has lefl the room @ Agent_CERN
5] Serice_JobRecaver has entered the raom W Agent_Marzellle
S]<Semace_JobRecener> Semvice ¥ Agent_Cufoed
[Semce_Jabﬁanile:mF:] o -:nnlmel W Lisa
b1] ecener has |efl the room Mader
¥ E?:fl ,_lt zpul,' amer hias entered the rom 4 ator
\'EIE'H .'.e_ JobRecerver> Senvice ¥ Service_lobRacehver
= v Service_Matcher
[Semvice_JobReceser] now anling

6] Service_Matcher has enered the room
GleSerace_Matcher> Senice [Sevice_Matcher)

now onling
-

Servics_Matcher: Service
T (.67 371 3T 4T
9732)

Role: parkicpant
FAifillaion: none

Interaction

Users can communicate with components (Services,
Agents, or Jobs) using standard “chat messages”
which are parsed and interpreted by the component
XMPP message handler.

The XMPP 1Q (Information/Query) messages provide
a rich RPC mechanism allowing XMPP enabled
components to expose a programmatic interface.

Backdrop Particle Paintings created by artist Tom Kemp September 2004 http://www.tomkemp.com

