DIRAC LIGHTWEIGHT INFORMATION AND MONITORING SERVICES
USING XML-RPC AND INSTANT MESSAGING

I. Stokes-Rees*, University of Oxford, Oxford, UK
A. Tsaregorodtsev, V. Garonne,
Centre de Physique des Particules de Marseille, Marseille, France

Abstract

This paper presents recent work on a scalable,
lightweight approach for distributed information and mon-
itoring systems done for the LHCb experiment’s DIRAC
grid software package. Two complementary systems are
presented, one based on a layered, DNS-like information
service, and the other a monitoring mechanism using in-
stant messaging for ad hoc networks which are formed
in a grid environment. The paper outlines the require-
ments, design architecture and features of the implemen-
tation. The performance results of these two systems in the
recent LHCb 2004 Data Challenge are presented.

INTRODUCTION

In a grid environment it is necessary to manage the dis-
covery, monitoring, coordination, and configuration of a
distributed set of independent services. The DIRAC grid
architecture [1, 8], developed for the CERN LHCb [4] ex-
periment, does this via an instant messaging framework and
a lightweight interface for service information discovery,
together called the Information and Monitoring Services.

This paper will discuss the features of these services
and how they have performed during the 2004 LHCb Data
Challenge (DCO04). Discussion of the overall DIRAC ar-
chitecture will not be covered, as it is discussed elsewhere
[9]. The first part of the paper covers the Information Ser-
vice API, providing a motivation for its development and
a brief comparison against alternative existing information
services. The second part will discuss opportunities for us-
ing instant messaging technology in a grid environment for
component monitoring and control. Finally the paper will
mention future development plans for these services.

DIRAC INFORMATION SERVICE

When working with large numbers of dynamic collabo-
rating components, possibly with replication either on the
same host or across a set of hosts, coordinating the configu-
ration and information access for each of these components
and between components is a difficult task. It was identi-
fied that every Service, Agent, and Client within DIRAC
required a uniform API which would provide:

e Local configuration and information
e Global (system wide) configuration and information
e Remote component configuration and information

* also Marie Curie Fellow at CPPM, Marseille, France

e Configuration and information sharing
Overriding of global settings

Ease of deployment

Ease of updates

Robustness

Simplicity

This is closely related to the classic Name Service prob-
lem, addressed in other contexts by DNS (Domain Name
Service) [6], LDAP (Lightweight Directory Access Pro-
tocol) [11], and UDDI (Universal Description, Discovery,
and Integration) [10], to name a few. It was not without
considering these existing approaches that the DIRAC In-
formation Service was developed. Of these alternate exist-
ing systems, DNS came the closest to providing a simple,
de-centralised system that did not require the installation
and configuration of a central information server, or have
particular pre-conceptions concerning the information con-
tained by the service or the method of service access. Un-
fortunately DNS still presented a sufficient level of com-
plexity from both the implementation and end user perspec-
tive to warrant the development of a new service. However,
many design ideas are borrowed from the DNS architec-
ture, such as iterative navigation, hierarchical information,
replication, and caching.

In an effort to utilise pre-existing software wherever pos-
sible, and given the extensive usage of the Python script-
ing language within LHCD, the configuration file format
supported by the standard Python module ConfigParser [5]
was taken as a starting point. The associated file format
provides categorized name/value pairs. Figure 1 illustrates
a simple example INI file (the name is taken from the Mi-
crosoft Windows INItialisation files which popularised this
format). The categories are called “sections”, which con-
sist of zero or more “options”. Each option has a text value.

The simplicity of this format means non-expert users can
easily modify configuration files. As well, it presents an in-
formation data model which is conceptually easy to grasp.
The goal was to present information to a software compo-
nent as if it had come from a single local INI file. The basic
interface is borrowed directly from the ConfigParser mod-
ule, as listed below (the optional [src] parameter will be
discussed later):

To clarify the distinction between the local ob-
ject which exposes this information source APl and
a remotely accessible service, two distinct classes
were created: LocalInformationService and
InformationService, respectively. The intention

[ServiceA]
ServiceName = DIRAC Job Matcher
CEUniquelds = in2p3.fr/pbs-short

[InfoService]

List = /etc/site-config.ini \
http://1bnts2.cern.ch \
http://marsanne.in2p3.fr

Figure 1. Example INI file

void set (section, option, value, [src])
value = get (section, option, [src]l)

list = options (section, [src])

list = sections([src])

Figure 2: Information Service base API

is that on a semantic level the APIs to these two objects
will be identical.

API| Features

A LocallnformationService object can be passed a num-
ber of information sources when it is created. This or-
dered list represents the hierarchy of sources which will
be queried in order, either until a requested item is found or
an exception returned (indicating the item does not exist)
once all sources have been attempted.

This list of sources can be composed of a mixture of
local files and remote sources. Local files are read di-
rectly into memory and not referenced again, while remote
sources are queried only when necessary. This approach
implies file based information is static and a snapshot is
taken at object creation time, while remote information can
be dynamic and subsequent requests may return different
results. A mechanism exists to copy results from remote
sources, placing a snapshot of those requested items in
memory in the local object, avoiding subsequent calls to the
remote service, but sacrificing the ability to catch changes
to remote information.

There is also the option to create a Locallnformation-
Service without any information sources, and simply add
information to the object during program execution, or add
a list of sources at a later point. Similarly it is possible to
change the list of remote sources, meaning a single Local-
InformationService object can act as an interface to request
information dynamically from any remote source. This
functionality explains the use of the optional [src] param-
eter in the API, which makes the object a stateless adapter
for interfacing to a remote information source exposing the

Information Service API.

The Information Service has been designed to be suffi-
ciently simple that any Service or DIRAC component can
expose its local configuration information via an XML-
RPC interface and therefore be accessed as a remote In-
formation Service.

Implementation, Operational Experience, and
Performance

An InformationService object contains a Locallnforma-
tionService object, or equivalent representation, and ex-
poses the contents of that object via a remotely accessible
API. In the case of DIRAC, this object provides the stated
API via an Internet accessible multi-threaded XML-RPC
interface, using HTTP. The actual information is contained
in a database for persistency, making use of 3-tuples of
(section,option,value), where (section,option) form a joint
key (i.e. must be unique within the table). This service
is supported by a multi-threaded database connection pool
which allows a pre-defined number of simultaneous queries
to be supported.

During DCO04, it was found that a configuration with a
single central information service and a set of local INI
files for each component allowed the efficient distribution
and management of system information. In this way, the
central Information Service provided system-wide “global”
information, such as the location of other services, grid-
enabled storage nodes, or configuration parameters. At
each site a site-wide configuration file was used, coupled
with a component specific configuration file. These three
sources (component, site, global) allowed Clients, Agents,
and Services to self-configure and inter-operate, and pro-
vided the flexibility to override information if necessary
(e.g. by utilising a local value in preference to a global
value).

By combining replication of Information Services, time-
outs, retries, fail-overs, caching, and block queries, a ro-
bust grid information infrastructure was established. It sup-
ported thousands of jobs executing simultaneously. Dur-
ing DCO04 the Information Service was constantly being
queried, with peaks of 300 requests per minute, however
the relational database server began to saturate above rates
of 40 queries per second.

It should be noted that while the initial design was meant
to support dynamic information updates and “live” infor-
mation regarding the state of services, in fact it was found
that the infrastructure was primarily used as a source of
configuration information, utilised primarily when a com-
ponent was created, or when a particular operation (such as
a file transfer) was performed. The vision of every compo-
nent providing real-time dynamic state information via this
infrastructure has not been heavily exercised, although in
principle is possible. The reason for this is related to the
development of the complementary instant messaging in-
frastructure which appears to be better suited to this task,
and which is discussed in the following section.

INSTANT MESSAGING

A grid computing environment is extremely dynamic
and unpredictable. Data is created, replicated, modified,
and deleted continuously, and a “grid job” may be executed
on one or more processors at a random grid computing site
at some undefined point in time after it is submitted. The
emerging concept of “Grid Services” [2] also suggests an
explosion in the number of dynamic services, constantly
being created, accessed, and destroyed by jobs. Given the
necessity of firewalls and the prevalence of Network Ad-
dress Translation (NAT) to partition off a computing clus-
ter or node onto a sub-net it can be extremely difficult to
gain access to active processes or “live data” (data which
is in the process of being created) for real-time information
concerning their state or for control. While the grid middle-
ware may provide some generic process discovery and con-
trol mechanisms, these typically are too coarse grained to
be especially useful. Furthermore, a grid computing en-
vironment experiences much higher levels of service inac-
cessibility than what is found in homogeneous, centrally
managed, single site computing facilities.

Instant messaging provides a mechanism to connect grid
components and users in a peer-to-peer fashion, transcend-
ing firewall and NAT issues, via a portable instant mes-
saging address. Certain instant messaging infrastructures
also provide message buffering, thereby protecting com-
munications from network outages, overloads, and restarts.
These features drew the LHCb grid software group to in-
vestigate the potential of using instant messaging to resolve
the aforementioned problems.

The Jabber [3]/XMPP [7] instant messaging protocol
was selected due to its simplicity (XML based with only
three message types), maturity and library availability for
all languages and platforms (including numerous clients
and servers). The sole drawback was the use of central
servers which act as messaging hubs, however this pro-
vided the advantage of “thin-clients”.

Instant Messaging within DIRAC

The original application of instant messaging within
DIRAC was to provide asynchronous, buffered messaging
between Services. Each Service Class was assigned a sin-
gle authentication credential (User account), and each Ser-
vice instance utilised a unique Resource name to provide
a single unique address for that instance. This mechanism
decoupled Services from each other and allowed them to be
stopped, restarted, and even moved to different hosts during
live operation (“service hot-swapping™). This was critical
for robustness of the overall system and maintenance of in-
dividual services. Given the number of Services was small
(5-20), and the communication between the Services lim-
ited, there were no problems with bottlenecks at the central
XMPP server seen with this approach.

The next step was to introduce instant messaging for
state monitoring of Agents. By using the “chat room” func-
tionality of instant messaging, an ad hoc messaging hub

could be created. Agents could connect to an “Agent Chat
Room” and publish progress information as chat room mes-
sages, and the room Roster list acted as an inventory of on-
line Agents. By using custom status fields the Roster also
provided information regarding where the Agent was run-
ning (host name, directory, process number). This was crit-
ical when mis-behaving Agents were discovered. Again,
given the number of Agents was initially low (10-100), this
operated well and allowed a system administrator to use a
standard GUI Client to connect to the same Chat Room and
monitor Agent status.

This naturally led to the question of introducing instant
messaging to each Job. The intention was to provide job-
level live monitoring. Due to the fact that the number of
active jobs was two orders of magnitude greater than the
number of Agents (1000-10,000 active jobs), it was discov-
ered that thousands of automated Instant Messaging clients
connecting to a single XMPP server or chat room resulted
in a Distributed Denial of Service (DDoS) attack. The mes-
saging load saturated the network connection, caused the
server to consume all available memory, and overloaded the
server processor. The XMPP server software was running
on the same server as the other DIRAC software services
and therefore paralysed the entire system. On the Client
side, the XMPP connection was not done in a separate pro-
cess or thread, so the blocking resulted in stalled processes.

This experience indicated that the XMPP server had to
be independent or sand-boxed so as to not overwhelm other
services on the same host, and that any DIRAC compo-
nents making use of XMPP client-side connections had to
do so in a non-blocking manner — that is, either in a sepa-
rate thread or fork, and with appropriate timeouts. A mem-
ory leak in the JabberD2 server software meant that above
1000 simultaneous connections the process would grow ex-
ponentially in size and eventually crash. This has since
been fixed, but at the time the integration of DIRAC with
the LHC Computing Grid made it necessary to operate one
Agent per Job, meaning that even limiting Instant Messag-
ing usage to Services and Agents would result in excessive
connections.

Within the development branch of DIRAC, another ap-
plication of interest has been implemented. This is to make
use of the <igq> messages to provide RPC functionality
through to Agents and Jobs, allowing them to be remotely
controlled, and to provide access to data local to a Job. The
initial implementation provides just basic process control
and small file transfer, however in principle a much richer
level of RPC interactivity is possible. Utilisation of the
standard <message> messages would also allow interac-
tion with Services, Agents, and Jobs using standard Jab-
ber/XMPP GUI clients, however this has not yet been in-
vestigated in depth.

Operational Experience

For DCO4 it was only possible to utilise instant mes-
saging for inter-service communication. The way instant

messaging was used with Agents and Jobs did not scale to
the loads DCO04 placed on the server, and which the server
software could support. This base inter-service functional-
ity was valuable, but it was clear that Jabber/XMPP instant
messaging could introduced a bottle neck and single point
of failure. The DDoS problem was not unique to Jabber,
but still must be considered. Instant messaging communi-
cations must be kept to manageable levels. It is hoped that
more recent versions of the JabberD server and changes to
how Instant Messaging is utilised within DIRAC will al-
low Agents and Jobs to utilise XMPP for monitoring and
interactive control.

An important issue is the authentication and authoriza-
tion of XMPP Entities. The current system can make
use of SSL/TLS to encrypt session contents, however no
open-source servers currently support client authentica-
tion using digital certificates. All authentication is user-
name/password based, and relies on a secure server, rather
than end-to-end message security. For automated XMPP
Entities the current servers either require hardcoded pass-
words, or the removal of password based security.

FUTURE DIRECTIONS

I nformation Service

The Information Service architecture has proved to be
functional, flexible, and scalable. The DIRAC team in-
tends to implement automated replication with both pull
and push modes for the Information Service to improve ro-
bustness. A security infrastructure which would associate
access and operation based rights with information entries
or sections would facilitate publishing and updating entries.
Information lifetimes would also be beneficial both for ex-
piring outdated entries, and for cache management. Alter-
natives to the 3-tuple relational database persistent Infor-
mation Service are planned to compare performance and
features.

Instant Messaging

There are a great number of potential applications of in-
stant messaging technology within grid computing. LHCb
plans to improve the scalability of the instant messaging
framework and investigate ways to avoid the DDoS prob-
lem. It is essential that x509 digital certificate based au-
thentication can be incorporated, and work is under way
on this at Brookhaven National Laboratory which is being
followed closely. Three key areas of interest exist: logging,
job coordination, and interactivity. An XMPP Entity can be
setup to act as a logging end point, and all messages sent to
it are timestamped, marked with the message source, and
appended to a persistent store. Chat rooms can be used,
as mentioned earlier, as a messaging hub to form an ad
hoc network to complete a parallel computation workflow
within a “meta-job”. Finally, the <iq> functionality pro-
vides great promise for job steering and job interactivity.
Users could build their own interfaces into the jobs and

have the jobs notify them via instant messages when they
start, as they progress, and at key way points, giving the
option to change parameters, suspend or cancel jobs, and
access local job files.

CONCLUSIONS

The DIRAC Information and Monitoring Services have
proved to be simple, lightweight, and functional. Their suc-
cessful use during LHCb DCO04 has resulted in a design and
implementation which can be extended to provide more
general functionality and greater robustness in the future.
For both XML-RPC and Instant Messaging secure access
channels must be established. Future work will involve im-
proving the scalability of both systems and adding addi-
tional interaction mechanisms. Attention will also be given
to performance benchmarking and comparison against al-
ternatives. The subsequent versions of these services will
be utilised for the LHCb 2005 Data Challenge.

REFERENCES

[1] DIRAC Grid Software. http://dirac.cern.ch/.

[2] | Foster, C Kesselman, J Nick, and S Tuecke. The phys-
iology of the grid: An open grid services architecture for
distributed systems integration. In Open Grid Service In-
frastructure WG. Global Grid Forum, 22 June 2002.

[3] Jabber Software Foundation. http://www. jabber.org/.
[4] LHCb. http://1hcb.web.cern.ch/lhcb/.

[5] Python Standard Library. ConfigParser
http://www.python.org/doc/current/1ib/
module-ConfigParser.html.

[6] P. Mockapetris. "RFC 1034: Domain Names - Concepts and
Facilities. http://www.ietf.org/rfc/rfc1034.txt,
November 1987.

[7] P. Saint-Andre. Extensible Messaging and Presence
Protocol (XMPP): Core. http://www.ietf.org/rfc/
rfc3920.txt, October 2004.

[8] Andrei Tsaregorodsev et al. DIRAC - Distributed Imple-
mentation with Remote Agent Control. In Proceedings of
Computing in High Energy and Nuclear Physics (CHEP),
April 2003.

[9] Andrei Tsaregorodsev et al. DIRAC - The Distributed MC
Production and Analysis for LHCb. In Proceedings of Com-
puting in High Energy and Nuclear Physics (CHEP), Octo-
ber 2004.

[10] Universal Description, Discovery and Integration. http:
//www.uddi.org.

[11] M. Wahl, T. Howes, and S. Kille. RFC 2251: Lightweight
Directory Access Protocol (v3). http://www.ietf.org/
rfc/rfc2251.txt, December 1997.

Module.

