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Acronyms

● European DataGrid (EDG)

● Workload Management System (WMS)

● European DataGrid Workload Management 
System (EDG WMS)

● Concurrent Version System (CVS)

● RPM Package Manager (RPM)
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Problem Description 1/2

● The team was 
characterized by a 
high geographic and 
administrative 
dispersion (as 
shown by the     )

● The EDG WMS 
Software was 
divided into several 
components under 
the responsibility of 
local development 
teams9/30/04 4 elisabetta.ronchieri@cnaf.infn.it



Problem Description 2/2

● Concurrent development and maintenance of 
various versions of the same code file were 
required

● Software dependencies were complex

– it was required to integrate and interface several external 
and internal dependencies

● Software organization was not well defined

– part of the code was already written

● Software had to build and run on the architecture 
Redhat Linux 7.3 and other platforms

– currently it runs on Redhat Linux 7.3
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The EDG WMS Code Structure

● The EDG WMS Code contains 
daemons, libraries, etc 

● The EDG WMS package is organized 
in a single directory tree shown on the 
right

– the main directory is called workload

● The package is divided in smaller 
components

– Further levels are present inside each 
component sub-directory

– They do not have a common structure

● It was difficult to have a simple and common build 
strategy for each of them (NOTE!)
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The EDG WMS Dependencies 

● The dependencies are divided in four categories:

1.Non-EDG packages – developed outside the EDG 
project

2.Non-WMS EDG packages – developed by other EDG 
work packages

3.Modified non-EDG packages – developed outside the 
EDG project that need to be modified by the WMS work 
package

4.WMS components – developed entirely by WMS work 
package

● They have been scan and resolved by the 
configuration options (NOTE!)
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The EDG WMS Internal Dependencies 

● The EDG WMS internal 
dependencies are 
shown on the right

– Each box represents one 
component

– Part of the internal 
structure of a component 
is shown with a thin box

– The direction of the 
arrow means that ”the 
destination object 
depends on the source 
one”
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GNU autotools: 
automake, autoconf, libtool

● provide developers a set of prepackaged and flexibly 
modifiable tests

● simplify the build and distribution of code

● organize the building in two steps

1.  configuration - generates Makefile's and perhaps other 
files, used by the build step

2.  build - uses the Unix make program, which reads a set of 
rules in a Makefile and use them to build the program

● enable/disable the build of a subset of the 
components (EDG WMS requirement)

● easily configure sub-packages
9/30/04 9 elisabetta.ronchieri@cnaf.infn.it



GNU autotools: 
automake, autoconf, libtool

● autoconf is a system of M4 macros and Bourne shell script 

● configure.in is a template of M4 macro invocations and shell code 
fragments, used by autoconf to produce configure script

● autoconf performs small tests designed to check each feature

● automake generates any number of Makefile file

● Makefile.am is a template of Makefile file read by automake to produce 
Makefile.in file

● These Makefile.in files are used by the configure script at configure time - 
configure script performs some substitutions on the templates to produce 

● libtool is used to automate the building, linking, and installation of shared 
and/or static libraries

● M4 macros are used to compile the configuration files
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The EDG WMS Code configuration, 
releasing and distribution

● Developers of a single component wanted to compile as 
less module as possible 

● Not all external dependencies are required by every 
component

● Enabling options and conditions were hard-coded into the 
configure.in file

● The component (de)activation has been obtained with 
several if statements hard-coded in the configure.in file

● Each component is enabled by default

● Each enabled component will trigger the check for the 
presence of any other external package related to it
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The EDG WMS Code configuration, 
releasing and distribution

● Specific M4 file for every external package has been created 
to detect the presence and the position of such package, 
testing easy functions, and set some variables

● M4 files define some macros and Makefile variables

– e.g. if the name of the external dependency is PACKAGE 

● AC_PACKAGE

– takes three arguments: version (when applicable), action to perform 
when the right dependency is found, action when it is not

● PACKAGE_LIBS

– contains the path and the name of the library(ies)
● PACKAGE_CFLAGS

– contains the path for the include files (if present)

● RUNPACKAGE

– contains the full path for the required executable
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Example: enabling/disabling the 
proxyrenewal component

● configure.in 

opt_enable_renewal=yes

.....

dnl

dnl proxyrenewal option

dnl

AC_ARG_ENABLE(renewal,

[enablerenewal build proxy

renewal [default=yes]],

enable_renewal=``$enableval``,

enable_renewal=no)

.....
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if test ``x$enable_opt1``=``xyes`` \

o ``x$enable_renewal``=``xyes`` \

o ``x$enable_optn``=``xyes``; then

opt_enable_opt1=$enable_opt1

opt_enable_renewal=$enable_renewal

opt_enable_optn=$enable_optn

fi

.....

have_renweal=$opt_enable_renewal

.....

 



Example: enabling/disabling the 
proxyrenewal component

● configure.in 

.....

if test ``x$have_myproxy``=``xno``; 
then

have_opt1=no

have_renewal=no

fi

.....

AM_CONDITIONAL(AMC_BUILD_RENEWAL,

test x$have_opt2=xyes\

o x$have_renewal=xyes)

.....
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.....

if test ``x$opt_enable_opt2``=``xyes`` \

o test ``x$opt_enable_renewal``=``xyes``; 
then

AC_MYPROXY(4.1.1, have_myproxy=yes, 
have_myproxy=no)

fi

.....

 



Example: enabling/disabling the 
proxyrenewal component

● Makefile.am (in the main directory 
workload)

if AMC_BUILD_RENEWAL

WL_RENEWAL=proxyrenewal

endif

....

SUBDIRS = config m4 \

$(WL_SUBDIR1) ... \

$(WL_RENEWAL) ... \

$(WL_RENEWALN)
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● Makefile.am (in the directory proxyrenewal)

if AMC_BUILD_RENEWAL

sbin_PROGRAMS=edgwlrenewd

bin_PROGRAMS=edgwlrenew

noinst_LTLIBRARIES=libedg_wl_renewal.la

endif

....



Example: delivering automatically EDG 
WMS RPMs

● configure.in

....

AC_EDG_RPMS

.....

AC_RPMS

.....
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Makefile.am (in the main directory workload)

....

rpm: $(RPMS_SPECS)

.....

rpmcheck:

.....

● There are four spec files:

● one covers the EDG WMS services and API

● two of them apply to a couple of external 
packages

● the last one includes the testsuite description



Release Deployment Procedure 1/2

● Specific Internal Procedure Steps 

– the set of bugs and new features were defined 
and communicated via e-mail or on the IRC 
channel

– when the development issues were resolved, an 
e-mail was sent to the work package mailing list, 
communicating the start time of the test session

● before this time, developers have to commit all 
pending changes
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Release Deployment Procedure 2/2

● Specific Internal Procedure Steps 

– when the start time was arrived, a CVS branch 
called test_<version> was created

– software was rebuilt starting from the new CVS 
branch, and some tests were performed

● including the execution of the work package specific 
regression test suite

– when tests were satisfactory, the release was 
tagged on the branch and all the applied fixes 
are merged to the main trunck
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A bit of sociology 

● The role of the packager was introduced to 
help WMS working group

– organizing the code tree structure

– providing templates for the packaging of new 
components

– overseeing on the uniformity of build procedures

– providing all developers common formats for the 
Makefile.am files, M4 files, and configure.in file

– allowing developers to concentrate just on code 
development 
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The EDG WMS Code Status

● Current version 
– makes use of the shown solution 

● Prototype of new version – uses GNU 
autotools – has not committed yet
– improves the description of the internal 

dependencies
● re-writing the configure.in file

– still uses M4 files for checking the external 
dependencies

● removing obsolete checks 
– For the developers, configure output is more 

readable than it was before (IMPORTANT!)
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Future Work

● autodep tool 
– is in the development phase 
– should be a new feature of GNU autotools
– should simplify the configure.in file, making it 

simpler for reading, once the tool is terminated
– should take into account complex interaction 

pattern
– is able to express internal and external 

dependencies in a fashion similar to that of 
common autotools  
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Conclusion

● Summarized our experiences

● Described the encountered limits

● Added extensions to manage and package 
code accommodating the needs of the EDG 
WMS

● Successfully handled complex set of internal 
and external dependencies

9/30/04 22 elisabetta.ronchieri@cnaf.infn.it



Conclusion

● Requirement: code organization should be 
well-defined before code writing phase

– Otherwise, it will be very difficult:
● making developers accept architectural/structural 

changes on the fly
● handling/managing dependencies between 

components

● Observation: a clear, well-designed initial 
model will allow to immediately identify major 
problems

9/30/04 23 elisabetta.ronchieri@cnaf.infn.it



Pointers
● The EDG WMS home page

– http://infnforge.cnaf.infn.it/cgi-
bin/cvsweb.cgi/workload/?cvsroot=workload

● CVS repository
– http://infnforge.cnaf.infn.it/cgi-

bin/cvsweb.cgi/workload/?cvsroot=workload
● access: ssh, (anonymous) pserver

● Thanks to the WMS team and the European 
Datagrid project
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