
Supporting the Development
Process of the DataGrid Workload

Management System Software with
GNU autotools, CVS and RPM

Elisabetta Ronchieri
(on behalf of the EDG work package 1)

CHEP 2004, 27. Sept. - 1. Oct., Interlaken

Acronyms

● European DataGrid (EDG)

● Workload Management System (WMS)

● European DataGrid Workload Management
System (EDG WMS)

● Concurrent Version System (CVS)

● RPM Package Manager (RPM)

9/30/04 2 elisabetta.ronchieri@cnaf.infn.it

Content
● Problem Description

● The EDG WMS Code structure

● The EDG WMS Dependencies

● Brief - GNU autotools – autoconf, automake, libtool

● The EDG WMS Code configuration, releasing and distribution

● Deployment Procedure

● A bit of sociology (D'HO)

● The EDG WMS Status

● Future Work

● Conclusion

9/30/04 3 elisabetta.ronchieri@cnaf.infn.it

Problem Description 1/2

● The team was
characterized by a
high geographic and
administrative
dispersion (as
shown by the)

● The EDG WMS
Software was
divided into several
components under
the responsibility of
local development
teams9/30/04 4 elisabetta.ronchieri@cnaf.infn.it

Problem Description 2/2

● Concurrent development and maintenance of
various versions of the same code file were
required

● Software dependencies were complex

– it was required to integrate and interface several external
and internal dependencies

● Software organization was not well defined

– part of the code was already written

● Software had to build and run on the architecture
Redhat Linux 7.3 and other platforms

– currently it runs on Redhat Linux 7.3
9/30/04 5 elisabetta.ronchieri@cnaf.infn.it

The EDG WMS Code Structure

● The EDG WMS Code contains
daemons, libraries, etc

● The EDG WMS package is organized
in a single directory tree shown on the
right

– the main directory is called workload

● The package is divided in smaller
components

– Further levels are present inside each
component sub-directory

– They do not have a common structure

● It was difficult to have a simple and common build
strategy for each of them (NOTE!)

9/30/04 6 elisabetta.ronchieri@cnaf.infn.it

The EDG WMS Dependencies

● The dependencies are divided in four categories:

1.Non-EDG packages – developed outside the EDG
project

2.Non-WMS EDG packages – developed by other EDG
work packages

3.Modified non-EDG packages – developed outside the
EDG project that need to be modified by the WMS work
package

4.WMS components – developed entirely by WMS work
package

● They have been scan and resolved by the
configuration options (NOTE!)

9/30/04 7 elisabetta.ronchieri@cnaf.infn.it

The EDG WMS Internal Dependencies

● The EDG WMS internal
dependencies are
shown on the right

– Each box represents one
component

– Part of the internal
structure of a component
is shown with a thin box

– The direction of the
arrow means that ”the
destination object
depends on the source
one”

9/30/04 8 elisabetta.ronchieri@cnaf.infn.it

GNU autotools:
automake, autoconf, libtool

● provide developers a set of prepackaged and flexibly
modifiable tests

● simplify the build and distribution of code

● organize the building in two steps

1. configuration - generates Makefile's and perhaps other
files, used by the build step

2. build - uses the Unix make program, which reads a set of
rules in a Makefile and use them to build the program

● enable/disable the build of a subset of the
components (EDG WMS requirement)

● easily configure sub-packages
9/30/04 9 elisabetta.ronchieri@cnaf.infn.it

GNU autotools:
automake, autoconf, libtool

● autoconf is a system of M4 macros and Bourne shell script

● configure.in is a template of M4 macro invocations and shell code
fragments, used by autoconf to produce configure script

● autoconf performs small tests designed to check each feature

● automake generates any number of Makefile file

● Makefile.am is a template of Makefile file read by automake to produce
Makefile.in file

● These Makefile.in files are used by the configure script at configure time -
configure script performs some substitutions on the templates to produce

● libtool is used to automate the building, linking, and installation of shared
and/or static libraries

● M4 macros are used to compile the configuration files

9/30/04 10 elisabetta.ronchieri@cnaf.infn.it

The EDG WMS Code configuration,
releasing and distribution

● Developers of a single component wanted to compile as
less module as possible

● Not all external dependencies are required by every
component

● Enabling options and conditions were hard-coded into the
configure.in file

● The component (de)activation has been obtained with
several if statements hard-coded in the configure.in file

● Each component is enabled by default

● Each enabled component will trigger the check for the
presence of any other external package related to it

9/30/04 11 elisabetta.ronchieri@cnaf.infn.it

The EDG WMS Code configuration,
releasing and distribution

● Specific M4 file for every external package has been created
to detect the presence and the position of such package,
testing easy functions, and set some variables

● M4 files define some macros and Makefile variables

– e.g. if the name of the external dependency is PACKAGE

● AC_PACKAGE

– takes three arguments: version (when applicable), action to perform
when the right dependency is found, action when it is not

● PACKAGE_LIBS

– contains the path and the name of the library(ies)
● PACKAGE_CFLAGS

– contains the path for the include files (if present)

● RUNPACKAGE

– contains the full path for the required executable
9/30/04 12 elisabetta.ronchieri@cnaf.infn.it

Example: enabling/disabling the
proxyrenewal component

● configure.in

opt_enable_renewal=yes

.....

dnl

dnl proxyrenewal option

dnl

AC_ARG_ENABLE(renewal,

[enablerenewal build proxy

renewal [default=yes]],

enable_renewal=``$enableval``,

enable_renewal=no)

.....

9/30/04 13 elisabetta.ronchieri@cnaf.infn.it

if test ``x$enable_opt1``=``xyes`` \

o ``x$enable_renewal``=``xyes`` \

o ``x$enable_optn``=``xyes``; then

opt_enable_opt1=$enable_opt1

opt_enable_renewal=$enable_renewal

opt_enable_optn=$enable_optn

fi

.....

have_renweal=$opt_enable_renewal

.....

Example: enabling/disabling the
proxyrenewal component

● configure.in

.....

if test ``x$have_myproxy``=``xno``;
then

have_opt1=no

have_renewal=no

fi

.....

AM_CONDITIONAL(AMC_BUILD_RENEWAL,

test x$have_opt2=xyes\

o x$have_renewal=xyes)

.....

9/30/04 14 elisabetta.ronchieri@cnaf.infn.it

.....

if test ``x$opt_enable_opt2``=``xyes`` \

o test ``x$opt_enable_renewal``=``xyes``;
then

AC_MYPROXY(4.1.1, have_myproxy=yes,
have_myproxy=no)

fi

.....

Example: enabling/disabling the
proxyrenewal component

● Makefile.am (in the main directory
workload)

if AMC_BUILD_RENEWAL

WL_RENEWAL=proxyrenewal

endif

....

SUBDIRS = config m4 \

$(WL_SUBDIR1) ... \

$(WL_RENEWAL) ... \

$(WL_RENEWALN)

9/30/04 15 elisabetta.ronchieri@cnaf.infn.it

● Makefile.am (in the directory proxyrenewal)

if AMC_BUILD_RENEWAL

sbin_PROGRAMS=edgwlrenewd

bin_PROGRAMS=edgwlrenew

noinst_LTLIBRARIES=libedg_wl_renewal.la

endif

....

Example: delivering automatically EDG
WMS RPMs

● configure.in

....

AC_EDG_RPMS

.....

AC_RPMS

.....

9/30/04 16 elisabetta.ronchieri@cnaf.infn.it

Makefile.am (in the main directory workload)

....

rpm: $(RPMS_SPECS)

.....

rpmcheck:

.....

● There are four spec files:

● one covers the EDG WMS services and API

● two of them apply to a couple of external
packages

● the last one includes the testsuite description

Release Deployment Procedure 1/2

● Specific Internal Procedure Steps

– the set of bugs and new features were defined
and communicated via e-mail or on the IRC
channel

– when the development issues were resolved, an
e-mail was sent to the work package mailing list,
communicating the start time of the test session

● before this time, developers have to commit all
pending changes

9/30/04 17 elisabetta.ronchieri@cnaf.infn.it

Release Deployment Procedure 2/2

● Specific Internal Procedure Steps

– when the start time was arrived, a CVS branch
called test_<version> was created

– software was rebuilt starting from the new CVS
branch, and some tests were performed

● including the execution of the work package specific
regression test suite

– when tests were satisfactory, the release was
tagged on the branch and all the applied fixes
are merged to the main trunck

9/30/04 18 elisabetta.ronchieri@cnaf.infn.it

A bit of sociology

● The role of the packager was introduced to
help WMS working group

– organizing the code tree structure

– providing templates for the packaging of new
components

– overseeing on the uniformity of build procedures

– providing all developers common formats for the
Makefile.am files, M4 files, and configure.in file

– allowing developers to concentrate just on code
development

9/30/04 19 elisabetta.ronchieri@cnaf.infn.it

The EDG WMS Code Status

● Current version
– makes use of the shown solution

● Prototype of new version – uses GNU
autotools – has not committed yet
– improves the description of the internal

dependencies
● re-writing the configure.in file

– still uses M4 files for checking the external
dependencies

● removing obsolete checks
– For the developers, configure output is more

readable than it was before (IMPORTANT!)

9/30/04 20 elisabetta.ronchieri@cnaf.infn.it

Future Work

● autodep tool
– is in the development phase
– should be a new feature of GNU autotools
– should simplify the configure.in file, making it

simpler for reading, once the tool is terminated
– should take into account complex interaction

pattern
– is able to express internal and external

dependencies in a fashion similar to that of
common autotools

9/30/04 21 elisabetta.ronchieri@cnaf.infn.it

Conclusion

● Summarized our experiences

● Described the encountered limits

● Added extensions to manage and package
code accommodating the needs of the EDG
WMS

● Successfully handled complex set of internal
and external dependencies

9/30/04 22 elisabetta.ronchieri@cnaf.infn.it

Conclusion

● Requirement: code organization should be
well-defined before code writing phase

– Otherwise, it will be very difficult:
● making developers accept architectural/structural

changes on the fly
● handling/managing dependencies between

components

● Observation: a clear, well-designed initial
model will allow to immediately identify major
problems

9/30/04 23 elisabetta.ronchieri@cnaf.infn.it

Pointers
● The EDG WMS home page

– http://infnforge.cnaf.infn.it/cgi-
bin/cvsweb.cgi/workload/?cvsroot=workload

● CVS repository
– http://infnforge.cnaf.infn.it/cgi-

bin/cvsweb.cgi/workload/?cvsroot=workload
● access: ssh, (anonymous) pserver

● Thanks to the WMS team and the European
Datagrid project

9/30/04 24 elisabetta.ronchieri@cnaf.infn.it

