LEXOR, the LCG-2 Executor for the ATLASDC2 Production System

A. De Salvo (INFN Roma);
G. Negri (CNAF Bologna);
D. Rebatto, L. Vaccarossa (INFN Milano).

Abstract

In this paper we present an overview of the implemen-
tation of the LCG interface for the ATLAS production
system. In order to take profit of the features provided
by DataGRID software, on wich LCG is based, we im-
plemented a Python module, seamless integrated into the
Workload Management System, which can be used as an
object-oriented API to the submission services. On top of
it we implemented Lexor, an executor component conform-
ing to the pull/push model designed by the DC2 production
system team. It pulls job descriptions from the supervisor
component and uses them to create job objects, which in
turn are submitted to the Grid. The interactions with the
production database and ATLAS metadata catalog, and the
staging of input and output files, are granted by the inte-
gration with the Don Quijote client module and via XML
messages to the production supervisor (Windmill).

ATLASPRODUCTION SYSTEM

The ATLAS Data Challenge

Starting on Summer *04, the ATLAS experiments [1] un-
dertake its second Data Challenge (DC2) in order to vali-
date its computing and data model. The phase | of DC2
consists in a massive production of simulated data (about
107 events). Events are generated using different gener-
ators (mainly Pythia and Herwig), while the simulation
(tracking of particles through the detector and recording
their interactions with sensitive elements of the detector) is
made using Geant4. Phase | will then proceed with pile-up
(superposition of background events with the signal ones)
and digitization, that will finally produce a suitable output
for reconstruction, which will be one of the main tasks in
phase Il.

The Production System

The DC2 production was planned to rely on the Grid
technology for distributed execution, while keeping the lo-
cal batch systems as backup solution.

For this purpose, a modular production system has been
designed and implemented. Its architecture consists in one
central database holding grid-neutral information about all
the jobs. A supervisor agent (Windmill, [3]) pick up unpro-
cessed jobs from this database, distribute them to the ex-
ecutors components, and verify them after execution. The
executors (one implementation per grid flavor) offer to the
supervisor acommon, grid independent interface to the un-

derlying middleware. For a detailed description of the Pro-
duction System, see [2].

Three executors have been developed: Capone for
GRID3, Dulcinea for NorduGrid and Lexor for LCG-2.

LEXOR IMPLEMENTATION

Lexor has been fully coded in Python. This language en-
courage a modular, object oriented approach to the applica-
tion developement, so we adopted this philosophy through-
out Lexor design.

Theinterfaceto LCG-2

As first, we created a module implementing a generic
LCG job class. Our code is based on the SWIG API to
the workload management system, developed by the Work
Package 1 (WP1) of the European DataGrid (EDG) project
for their User Interface.

Through this API, our class offers methods for defining,
submitting, and managing the job on the grid.

For job definition, a set of methods allows the manip-
ulation of the underlying JDL description, either by direct
access to the classAd attributes or via higher level functions
(e.g. addRequirements (), used to add an AND-ed condi-
tion to the requirements for the CE). Another few methods
are used to tune and perform the job submission, to moni-
tor the job status (and extract single pieces of information
from the status), and finally to retrieve the output sandbox
of the job. A job cancellation method is also provided, but
not yet used in the production system.

If imported in an interactive Python session, the LCG job
class can also be used as a programmable, object oriented
replacement for the standard LCG User Interface when
working with standard jobs (checkpointable and interactive
jobs are not supported).

The XML-to-JDL translator

The encoding and decoding of the XML control mes-
sages between supervisor and executor are demanded to a
dedicated module coming with the supervisor.

Only for parsing the job description, we implemented
a custom module with a different approach from the de-
fault one. Instead of looking for a fixed set of attributes
in the XML job description, we recursively navigate the
whole XML tree. For each node, a corresponding method
of the parser class is invoked, which is responsible to ei-
ther do further navigation in its subnodes, or to produce
the relative JDL attribute. This approach has proven to be



quickly and easily extensible: changes and improvements
in the XML schema for job description were usually coped
by just adding few lines of code.

Most of the common attributes (i.e the ones not de-
pending on the single job, and thus not present in
the XML job description) are taken from Lexor con-
figuration file. Here, by example, a user can select
a subset of sites where the job can run, with a se-
mantic similar to hosts.allow and hosts.deny. By
specifying regular expressions in the allowedSites and
forbiddenSites fields of the configuration file, a set
of RegExp(<the_regexp>, other.GlueCEUniqueID)
expressions are added to the Requirements attribute of
the JDL.

Resource availability estimation

When it is in submission mode, the supervisor periodi-
cally asks for the number of jobs the executor is willing to
manage. To answer this question, we issue an ldap query to
the LCG Information System to retrieve the number of free
CPUs in the sites matching the requirements expressed in
the supervisor request.

Computing this number revaled to be a tricky task, due to
the aggregated nature of the information published by the
LCG Information System. Often we overestimate the real
amount of available CPUs, because some of the advertised
ones are not accessible by ATLAS jobs. This problem was
temporarily addressed by defining one queue for each VO,
but a refining of the information schema has to be consid-
ered.

The Job Wrapper

Once submitted, a job is dispatched to the Computing
Element (CE) selected by the broker and enqueued until
the local batch system start executing it on a Worker Node
(WN). Anyway, before the required transformation can be
started, a lot of actions have to be performed on the WN,
so we had to wrap the job in a pretty thick script. To have
an idea of all the tasks accomplished by the job wrapper,
see Figure 1. Here are shown also the interactions whith
external services like the PACMAN [6] repository where
the tranformation packages are hosted, or the Don Quijote
server [4], [5].

In the wrapper we also embedded some mechanisms to
cope with temporary problems in the underlaying grid. The
biggest one was the occasional unavailability of the AT-
LAS software, due to NFS problems between the CE ex-
porting the software direcory and the WN. Jobs being ex-
ecuted on such hosts failed at the very beginning, freeing
the WN which attracted more and more jobs. To avoid this
“black-hole” effect, we modified the wrapper to have the
job sending an e-mail message to the submitter about the
problem, and then sleeping for some hours. When it wakes
up, the process is repeated until the software is found or the
job is killed. This keeps the WN busy, preventing further
attempts to run jobs on it.

Also the stage-in and the stage-out phases of the wrapper
were enclosed in a sleep and retry cycle. The LCG com-
mands used to stage files are in fact very sensible to failures
or big delays in the services they rely on. The heavy work-
loadload, imposed on these services by the high number
of concurrent requests from the running jobs, sometimes
caused them to become unresponsive for a while or even to
crash. This affected all the running jobs, which after hav-
ing successfully executed the transformation failed to stage
the produced files to the Storage Element. The retry mech-
anism didn’t completely solved the problem, but it allowed
to recover many jobs where the LCG commands hung. In
fact, killing by hand the command process, a subsequent at-
tempt was triggered, and usually succefully accomplished.

RUNNING LEXOR

In three months of activity, Lexor has managed more
than 100.000 jobs, including generation, simulation, digiti-
zation and pile-up. More than 30 LCG sites were involved,
providing overall about 3.000 CPUEs.

The job management was shared, on average, among six
Lexor instances owned by different users, every instance
taking care of a maximum of about 800 jobs at a time.
This threshold was decided in order to limit the size of
the queries issued by supervisors to the central production
database.

Troughs in the day by day production plot (Figure 2) re-
flect the various issues encountered during this first phase
of the Data Challenge. In fact, thanks to the heavy load
we imposed on all the components, we were able to hunt
undiscovered bugs in all the components of the production
system and in LCG middleware.

REFERENCES

[1] http://atlas.web.cern.ch/Atlas/

[2] Luc Goossens, “ATLAS production System in ATLAS Data
Challenge 2”, [501] CHEP 2004.

[3] http://heppcl2.uta.edu/windmill/

[4] Miguel Branco, “Don Quijote - Data Management for the
ATLAS Automatic Production System”, [142] CHEP 2004

[5] http://mbranco.home.cern.ch/mbranco/cern/donquijote/
[6] http://physics.bu.edu/ youssef/pacman/



STORAGE
ELEMENT

REPLH

M CATALOG

e -

UIJO

BREES DON Q

Data stage-in and
stage-out are
performed via
Don Quijote
interaction by
scripts created at
submission time
by Lexor and
shipped via input
sandbox to the
WN

]
Need
-~ input files?

Verify Sleep 4h waiting
Start job ATLAS s/w «—— for the site manager
installation to fix the problem
no Send an alert
via e-mail
PACMAN
REPOSITORY 1 Download
1 and install L Succeded?
The appropriate ] Lo AN
transformation is 1
downloaded and 1 yes
installed ' ; ' i
dynamicall ) nstal
v Y A Transformation
package

no

Job failed

Figure 1: A lot of operations are carried out by the job wrapper before and after the actual transformation.

Figure 2: Jobs processed by Lexor day by day.



