
QUALITY ASSURANCE AND TESTING IN LCG

M. Gallas∗, J.T. Moscicki† , A. Aimar, L. Mancera, M. Lammana
CERN, Geneva, Switzerland

Abstract

Software Quality Assurance is an integral part of the
software development process of the LCG project. It in-
cludes several activities such as automatic testing, test cov-
erage reports, static software metrics reports, bug tracker,
usage statistics and compliance to build, to code and release
policies.

Automatic software testing is integrated into the qual-
ity assurance activity. The SPI project delivers a general
test-framework solution based on open source software to-
gether with test document templates and software testing
policies. The test-framework solution is built on QMTest,
Oval and the X-Unit family (CppUnit, PyUnit, JUnit). The
specific languages testing features are covered at the unit-
testing level with the X-Unit family, the validation testing
activity can be done through Oval. Moreover QMTest of-
fers a way to integrate all the tests and write custom python
tests, having a nice web interface for running and browse
the test results.

The test coverage reports allow to understand to which
extent software products are tested. They are based on the
approach used by the Linux Testing Project. The code size
and the development effort of the software is estimated
using “sloccount utility” based on standard development
models. Statistics are automatically extracted from the Sa-
vannah bug tracker which enables to analyze the evolution
of the quality, amount of feedback from the users, etc. Fi-
nally the compliance with the standard LCG policies is ver-
ified. It includes the build and CVS repository structure and
the standard release procedure.

INTRODUCTION

Quality Assurance (QA) and Software Testing (Sw-
Testing) activities in the LCG Applications Area1 were ad-
dressed since the very beginning to support the software
development process in projects like POOL, SEAL, PI, and
SIMULATION 2. Both activities are part of the develop-

∗mgallas@mail.cern.ch
† jakub.moscicki@cern.ch
1Applications is one of the four activity areas in the LHC Computing

GRID Project (LCG) that develops and maintains that part of the physics
applications software and infrastructure shared among theLHC experi-
ments (see more in http://lcgapp.cern.ch/project/)

2The four development projects within the LCG Applications are:

• POOL: http://lcgapp.cern.ch/project/pool

• PI: http://lcgapp.cern.ch/project/pi

• SEAL: http://lcgapp.cern.ch/project/seal

• SIMULATION: http://lcgapp.cern.ch/project/simu

ment infrastructure which is provided by the Software Pro-
cess Infrastructure (SPI) project [1].

The SPI infrastructure promotes consistency and ho-
mogeneity of software development in terms of coding
styles, build systems, software testing and quality assur-
ance. Additionally SPI provides software project manage-
ment services such as task management, Web project por-
tals and collaborative tools (Savannah), mailing lists, CVS
repository and CVS browsing tools, external software li-
braries, and software products distribution-kits. The strat-
egy adopted by the SPI project is based first on the break-
down of the whole SPI project in different services that
can be operated independently or in conjunction. Second,
it tries to use and integrate the available free source code
tools. And third, SPI works with the users, starting from the
development related work instead from the requirements or
design that is leaved to the projects themselves.

In this spirit the QA and Sw-Testing are two, closely re-
lated SPI sections that use other SPI services like the SPI
External Tools service [2], which offers centralized access
to the common external software used by the LCG projects
and LHC experiments, or Savannah [3] Project Portal to
track the software bugs and analyze the their evolution.

QUALITY ASSURANCE IN LCG
APPLICATIONS AREA

Software Development in large scientific environment
such as High Energy Physics is different from industrial
environment for several reasons:

• there are not easy ways of measuring the compliance
of project deliverables with product specification be-
cause such specificationsa priori do not exist;

• management of user requirements is particularly diffi-
cult because they are very often discovered and intro-
duced at very late phases of projects;

• software procedures and tools are not standardized
and they are defined by agreement of scientific groups
rather then by central decision of the management.

Therefore special approach is required to successfully
integrate QA into the software development process. It
should focus on monitoring and improving information
flow between the development teams and users (which are
very often other development teams) and enhance the qual-
ity of software artifacts such as tests and documentation.



This would indirectly improve the software quality both
from the purely technical perspective as well as the inter-
action with user community. Organization of QA in LCG
provides a concrete example.

Testing and Bug Reporting are central concepts in the
LCG QA. Test Inventory allows to estimate the amount of
support for testing in a project.Bug Tracker Statistics gives
the defect summary in the function of time. Bug reports
(and following bug fixes) may be correlated with corre-
sponding test cases, to make sure that every reported bug
is covered in automatic testing and minimize the risk that
it will be silently reintroduced in subsequent releases of a
project. Bug Tracker Statistics may be generated for arbi-
trary periods of time including the time covering the release
cycles (see Fig. 1)

Figure 1: Bugtracker Statistics example

Test Metrics not only give detailed information about the
results of the automatic test execution. They also enable to
check the test coverage and spot the memory leaks.Test
coverage is particularly important because it allows to esti-
mate how much of the source code is covered by the tests. It
helps to improve the test suite to provide a maximal possi-
ble coverage. Current test coverage implementation is very
lightweight and uses the built-in features of gcc3.2 com-
piler and helper tools from Linux Testing Project [11].

Software Complexity Metrics are estimated at the level
of packages and subsystems (e.g. [10]). Source code com-
plexity measures as proposed by commercial tools (e.g.
[5]) did not gain wide usage and have not been imple-
mented.

Documentation Inventory allows to assess the quality of
documentation artifacts. Currently it focuses on automati-
cally generated references (i.e. [4]) and examples provided
by the projects.

Source Code Metrics provide a simple estimate of the
size of the project measured in SLOC ([7]) units. Coding
Conventions are checked automatically ([8])3

Summary of Quality Assurance activities:

• Test Inventory: number of unit, integration and vali-
dation tests, number of tests in automatic test system

3at the time of writing, Coding Conventions checks have not been im-
plemented

• Test Metrics: automatic test execution, test coverage,
memory leaks.

• Bug Tracker Statistics: number of spotted defects (in
time), efficiency of bug fixing (in time), number of
users (individuals who spotted defects).

• Software Complexity Metrics: package dependency
metrics (e.g. NCCD, see [9]), source code complexity
metrics (Logiscope, see [5]).

• Documentation Inventory: number of (meaningful)
warnings from automatic refdoc tool per package,
number of packages without user documentation,
number of examples per package an per project

• Source Code Metrics: SLOC number (number of
physical lines of code), Coding Conventions

LCG Applications Area decided to introduce the Soft-
ware Development Policies to provide a minimal required
homogeneity of the project setup, CVS structure, build sys-
tem, packaging and installation procedures [12]. LCG QA
provides tools to ensure that configuration of a build system
and CVS directory structure policies are respected.

Every release of one of LCG Applications Area projects
is followed by automatically generated QA report. QA re-
ports are published on a public website of SPI project. Ad-
ditionally any member of the project may generate addi-
tional reports with customized options settings. Web inter-
face for the tools is under development to further facilitate
the usage of QA tools by all project members. Existing QA
infrastructure will be reused in the context of EGEE project
[6].

SOFTWARE TESTING IN LCG
APPLICATIONS AREA

The main goal of the Sw-Testing SPI component [13]
was to offer all the infrastructure (tools, polices, documen-
tation, examples, support) needed to guarantee that within
the LCG Applications Area the Sw-Testing can be an inte-
gral part of the software development process, all level of
software testing can be run as part of an automatic process
as many times as needed (by developer, by release man-
agers, at the developing time, at nightly builds or at releases
time) and the Sw-Testing infrastructure offers a common
entry point for the QA activity in order to inspect the test
results and test coverage.

The initial scope within the LCG Applications Area was
enlarged by the fact that the acquired experience is now
shared among other software projects like the Enabling
Grids for E-science in Europe (EGEE) [14] and the offline
software for the ATLAS [15] CERN-LHC experiment.

The survey phase of the Sw-Testing SPI component has
shown that the software testing activity is not a very com-
mon activity in the HEP community and probably this is
due to the lack a well defined software infrastructure with
the appropriate test frameworks and policies. The intention



of the SPI Sw-Testing component was the creation of the
needed infrastructure for testing and reinforce in this way
the testing culture, working inside the LCG Applications
Area projects and learning from their needs.

The three main deliverables from the SPI Sw-Testing
component are the test-framework environment, the test
policies compilation and the test documentation within the
LCG Application Area.

Test-FrameWorks

The test-framework environment adopted is based on
open source and existing test-frameworks. Totally inde-
pendent of the build system it can be run in different
platforms (Linux-Unix, Windows and MacOsX platforms),
and it covers from unit-testing to validation-testing. It com-
bines QMTest [16], Oval [17], and the X-Unit [18] test-
frameworks family (JUnit, CppUnit, PyUnit, etc) in order
to fulfill all the LCG Applications Area needs. It offers
a structured and coherent automatic software testing ap-
proach in which the different selected test-frameworks are
totally integrated.

The QMTest tool works as the master piece (see Fig. 2)
of the adopted test-framework environment in the sense
that it can run all the tests in automatic way offering also a
nice web interface (accessible remotely if needed) to setup,
to browse and run the tests, easy browse-able log execu-
tion file, easy interface with the nightly building system
(NICOS [15]) and valuable information for the QA activity.
The tests can be organized hierarchically by components
or packages, QMTest records the dependences among tests
and expected results (pass, fail, untest). It can be operated
in batch or through the Web based GUI interface. The tests
can be run in parallel, all or one of them at once if needed.
QMTest is written in Python and all the configuration files
and any relevant information for the reports use the stan-
dard Extensible Markup Language (XML), it is modular
and new functionality can be added in an easy way as well
as other test frameworks.

QMTest was selected among other tested possibili-
ties like the Software Testing Automation Framework
(STAF) [19] and DART [20]. QMTest is a light tool that
offers a web interface (in comparison with STAF) and it
does not depend on any tool to build the test executables
(DART depends on CMake).

QMTest as top level tool integrates the other proposed
tools as well as the test-scripts or validation examples. The
rest of the proposed test-frameworks are adopted due to two
main reasons:

1. They offer at the level of sw-testing, tools written for
and in the specific programing language (Java, C++,
Python...) as it is the case of Junit, CppUnit, PyU-
nit or any other member of the X-Unit family. This
will make a comfortable and more adapted test envi-
ronment for the developer, in special in case of the
unit-testing.

2. To allow two ways of testing: “test inside the testing-
code” (X-Unit style) and “check the output of the test
code” (Oval style). The later is a quite extended way
to work within HEP. The developers normally check
the output of their tests and examples on the std-out.
The use of Oval represents the minimal effort to con-
vert this habit in something that can be ran automati-
cally

Figure 2: General overview schema of the software testing
frameworks used in LCG Application Area.

CppUnit, unit-testing framework for C++, in the philos-
ophy of the extreme programing, is one of the members of
the X-Unit family (Junit, PerlUnit, PyUnit...) and it was
adopted at the very beginning of the SPI Sw-Testing com-
ponent as it is out of the box. The work done on it was
the creation of a common CppUnit test driver for all the
projects to make possible the integration of this tool in the
OVAL and QMTest test-frameworks. CppUnit was selected
instead other C++ test-unit frameworks (like for example
the test library of Boost) for its independence and because
it belongs to the X-Unit family (less training and common
approach in different programming languages: Java, C++,
Python). The scope of CppUnit is the unit-testing in C++
and it provides the name of the test case that fails, the
name of the source file that contains the test and the line
number where the failure occurred together with the ex-
pected value. The use of PyUnit (now part of the standard
Python distribution) within LCG Application area was de-
cided base on the same reasons as CppUnit.

OVAL [17] is a testing validation tool developed origi-
nally within the CERN-CMS experiment that was adopted
as one of the testing frameworks at the very beginning of
the SPI Sw-Testing component. The main reason was the
easy testing approach in which the tester only needs to val-
idate the output of the test program and create a reference
output. Later, the “smart” oval diff command can compare
automatically the output of the test program and the refer-
ence output. Looking for the specific oval-tags (that must
be instrumented in the test code), oval can point the differ-
ences between the output of the program at any time and the
expected output saved in the reference output. Oval does
not provide help to write the test code, it only compares
the output of the test code against a reference. Oval has



not a browse-able GUI to record the test results and does
not offer the extra features that QMTest offers and in LCG
Applications Area is always reporting to QMTest tool.

The test-frameworks described above were integrated
and made available through the SPI External Library Soft-
ware service [2] (in different platforms and compilers) with
minors modifications in respect to the original sources. The
use of open source and not project-built specific tools and
solutions allow as to contribute to the general open source
projects with a minimal load of work to keep the tools
working and updated.

As part of the integration effort and to make easy the
software testing to the LCG Application Area projects, spe-
cific Python scripts were built to set test-clases examples,
test examples and to automatically configure QMTest pro-
ducing all the needed test suites and test cases. Depen-
dences among tests or test hierarchy must be added by hu-
mans using the QMTest GUI interface.

Test Policies

As a part of the needed requisites to have a real software
testing activity the elaboration of the Sw-Testing policies
was done in agreement with the LCG Applications Area
projects. They are explain in detail on the Sw-Testing SPI
component [13], and they cover from the design-phase of a
software project and the test-plan specification to the code-
phase describing how the tests must be done, place in the
CVS repository and how they can be run. To be able to
run all the tests in automatic way and with a minimal effort
in the configuration of the test-framework tools some test-
name and directory structure is needed. In this way is also
easy to check in a first instance that each software compo-
nent has the required unit-test (later the test coverage tool
will tell more about it) and it is also easy recognize which
package or packages are involved in a test that is failing.
The bug-tracking activity and the implicit requirement to
write a test that can check the detected bug is also a police.

The Sw-Testing polices are somehow summarized in a
“Sw-testing QA check list” that it is included in the QA
reports.

Test documentation

The software testing activity must be well documented
and the SPI Sw-Testing component delivers simple test-
plan and test-case templates. Their are simple and short
to not overload the developers. Is still needed a tool that
can help in the elaboration of this documentation.

SUMMARY

Software Quality Assurance in LCG Applications Area
is focused around Software Testing and Bug Tracking.
The SPI project provides integrated development services
which enable smooth integration of QA procedures into the
Software Development Process of various LCG Applica-
tion Area projects. Rich set of testing tools and extensive

documentation of testing procedures provides a substan-
tial level of support for automatic software testing. The
methodology of Quality Assurance and Software Testing
adopted by SPI is largely based on best practices available
in the Open Source Community.

ACKNOWLEDGMENTS

The authors would like to thank the developers within
the projects POOL, SEAL and PI for their collaboration
and feedback during the initial phase of the SPI project.
M. Gallas and J.T. Moscicki are supported by the Particle
Astronomy Research council, Swindon, UK.

REFERENCES

[1] The LCG SPI project is described at:
http://spi.cern.ch

[2] E. Poinsignon et alt, “Managing third-party software for the
LCG Application Area project”, poster at CHEP conference,
September 2004, Interlaken, Switzerland.
http://spi.cern.ch/extsoft

[3] LCG Savannah:http://savannah.cern.ch

[4] http://www.doxygen.org

[5] Telelogic TAU/Logiscope,
http://www.telelogic.com/products/tau/logiscope

[6] http://www.public.eu-egee.org

[7] http://www.dwheeler.com/sloc

[8] http://spi.cern.ch/extsoft/rulechecker.html

[9] J. Lakos, “Large-Scale C++ Software Design”, Addison-
Wesley Professional; 1st edition (June 1, 1996)

[10] L.Tuura et al., “Ignominy: a tool for software dependency
and metric analysis with examples from large HEP pack-
ages”, (CHEP) conference, 2001, Beijing, China. See also:
http://cern.ch/ignominy/ignominy.html

[11] http://ltp.sourceforge.net

[12] The LCG Applications Area policies are defined at:
http://spi.cern.ch/lcgpolicies

[13] http://spi.cern.ch/testing

[14] L. GUY and alt., “Distributed Testing Infrastructure and
Process for the EGEE Grid Middleware”, poster at CHEP
conference, September 2004, Interlaken, Switzerland.
http://egee-jra1-testing.web.cern.ch

[15] A. Undrus, “Automated Tests in Nicos Nightly Control Sys-
tem”, poster at CHEP conference, September 2004, Inter-
laken, Switzerland.
www.usatlas.bnl.gov/computing/software/nicos

[16] http://www.codesourcery.com/qmtest

[17] D. Chammont and C. Charlot, “OVAL: the CMS Testing
Robot”, CHEP, March 2003, la Jolla, California, USA.
http://polyww.in2p3.fr/cms/software/oval

[18] The X-Unit family is described at:
JUnit: http://www.junit.org
CppUnit:http://sourceforge.net/cppunit
PyUnit: http://pyunit.sourceforge.net

[19] http://staf.sourceforge.net

[20] http://public.kitware.com/DART


