
THE VIRTUAL GEOMETRY MODEL

I. Hřivnáčová, IPN, Orsay, France

Abstract

In order for physicists to easily benefit from the differ-
ent existing geometry tools used within the community, the
Virtual Geometry Model (VGM) has been designed. In the
VGM we introduce the abstract interfaces to geometry ob-
jects and an abstract factory for geometry construction, im-
port and export. The interfaces to geometry objects were
defined to be suitable to describe “geant-like” geometries
with a hierarchical volume structure.

The implementation of the VGM for a concrete geome-
try model represents a small layer between the VGM and
the particular native geometry. At the present time this im-
plementation is provided for the Geant4 and the Root TGeo
geometry models.

Using the VGM factory, geometry can first be defined
independently from a concrete geometry model, and then
built by choosing a concrete instantiation of it. Alterna-
tively, the import function of the VGM factory makes it
possible to use the VGM directly with native geometries
(Geant4, TGeo). The export functions provide conversion
into other native geometries or the XML format.

In this way, the VGM surpasses one-directional geome-
try converters within Geant4 VMC (Virtual Monte Carlo):
roottog4 and g4toxml, and automatically provides missing
directions: g4toroot, roottoxml. To port a third geometry
model, then providing the VGM layer for it is sufficient to
obtain all the converters between this third geometry and
already ported geometries (Geant4, Root).

The design and implementation of the VGM classes, the
status of existing implementations for Geant4 and TGeo,
and simple examples of usage will be discussed.

ARCHITECTURE

The VGM concept

The Virtual Geometry Model (VGM) has been devel-
oped as a generalization of the existing converters roottog4,
g4toxml provided within Geant4 VMC [1], when new di-
rections: g4toroot, roottoxml were asked for by users.

Instead of adding other one-way converters and multi-
plying the implementations, the abstract layer to geome-
try has been defined and the geometry models have been
“mapped” to this generalized scheme. Once this is done,
the geometry objects in these integrated models can be han-
dled in the same way.

This new concept is demonstrated in Fig. 1

Figure 1: The VGM concept

Components

The main VGM components are shown in Fig. 2 together
with their dependencies on the external software.

In the VGM, abstract interfaces to geometry objects and
abstract factories for geometry construction, as well as im-
port and export, are introduced. These interfaces are in-
cluded in the core VGM package. Since CLHEP [2] has
been chosen for representation of the 3D transformations,
the VGM package requires this library.

The implementation of the VGM for a concrete geome-
try model represents a layer between the VGM and the par-
ticular native geometry. At present, this implementation is
provided for the Geant4 [3] and the Root TGeo [4] geom-
etry models. The dependence on the particular geometry
models is hence restricted only to its VGM layer.

Besides the geometry model specific packages, the VGM
provides also the XML exporter, which is included in its
own package and does not bring dependency on any exter-
nal software.

Figure 2: The VGM modules



Interfaces to geometry objects

The interfaces to geometry objects were defined with the
intention to be suitable for a desription of “geant-like” ge-
ometries with a hierarchical volume structure. The basic
entities sufficient for such geometry description have been
identified: solid, volume and placement to describe vol-
umes hierarchies; and element, material and medium to de-
scribe material properties.

The solid and placement entities can have more specifi-
cations. In case of the solid it is reflected by introducing a
specific interface for each solid type (box, tubs, cons, ...),
while in the placement case, both types introduced (sim-
ple placement and multiple placement) are described with
a single interface.

The class diagram for the VGM implementation of the
box object, see Fig. 3, demonstrates the mapping between
the objects in the native geometry and the interfaces intro-
duced in the VGM. The same approach has been applied
to the other geometry entities. In case a common imple-
mentation of some functions (imposed by the interface) is
wanted, an abstract base class providing this implementa-
tion is defined first and the class in the VGM layer for a
particular geometry model makes a specification of this ab-
stract base class only.

Figure 3: The class diagram of the box solid in the VGM

Abstract factories

The VGM abstract factories, GIFactory and GIMaterial-
Factory, provide functions for geometry construction, im-
port and export. While the functions for geometry con-
struction and import are specific to a geometry and have
to be provided by the geometry specific layers, the export
function could be implemented in a common way and is
provided in the abstract base classes (GVFactory, GVMa-
terialFactory) in the VGM package.

The class diagram for the VGM factories is shown in
Fig. 4

Figure 4: The class diagram of the VGM factories

USE OF VGM

Geometry conversions

To convert native geometry from one geometry model to
another, the geometry has to be first imported in the VGM
(the native geometry objects are mapped to the VGM inter-
faces) using the concrete VGM factory for this geometry
model, and then exported using the VGM factory for the
other geometry model. In Example 1 the conversion of ge-
ometry from Geant4 to Root is demonstrated.

Example 1: Converting geometry from Geant4 to Root via
the VGM

#include ”Gg4Factory.h”
#include ”GrtFactory.h”
#include ”TGeoManager.h”

// Import Geant4 geometry to VGM
Gg4Factory g4Factory;
g4Factory.Import(physiWorld);

// where physiWorld is of G4VPhysicalVolume* type

// Export VGM geometry to Root
GrtFactory rtFactory;
g4Factory.Export(&rtFactory);
gGeoManager- � CloseGeometry();
return rtFactory.World();

// returns Root top volume of TGeoVolume* type

Geometry construction via the VGM

The VGM interfaces can be used to define geometry in-
dependently from a concrete geometry model. The code
in Example 2 builds a world box volume using the ab-
stract VGM factory, choosing the concrete factory (Geant4
or Root VGM factory) will then build the geometry of the
chosen model (Geant4 or Root).



Example 2: Geometry definition via the VGM

MyDetConstruction::Construct(GIFactory* factory)�

double ws = 10*m;
GISolid* worldS

= factory- � CreateBox(”worldS”, ws, ws, ws);
// create the world solid

GIVolume* worldV
= factory- � CreateVolume(”worldV”, worldS, ”Air”);

// create the world volume

factory- � CreatePlacement(”world”, 0, worldV, 0,
0, Hep3Vector());

// place the world volume�

#include ”Gg4Factory.h”
MyDetConstruction myDetConstruction;
Gg4Factory theFactory;
myDetConstruction- � Construct(&theFactory);

// Geant4 geometry will be built

#include ”GrtFactory.h”
MyDetConstruction myDetConstruction;
GrtFactory theFactory;
myDetConstruction- � Construct(&theFactory);

// Root geometry will be built

Export to XML

The VGM geometry can be exported to XML in the
AGDD [5] or GDML [6] format. Complying with the XML
schema is embedded in the VGM XML exporter code it-
self, no external XML parser is then needed.

This is demonstrated in Example 3.

Example 3: Exporting geometry from the VGM factory in
XML (AGDD, GDML)

#include ”GAGDDExporter.h”
GAGDDExporter xmlExporter1(&theFactory);
xmlExporter1.GenerateXMLGeometry();

// Export geometry to AGDD

#include ”GGDMLExporter.h”
GGDMLExporter xmlExporter2(&theFactory);
xmlExporter2.GenerateXMLGeometry();

// Export geometry to GDML

TESTING

The same simple geometry setups were defined via
Geant4, Root and VGM to test different aspects of the
VGM: Solids, Placements, Boolean Solids and Reflections
(see Fig. 5, Fig. 6, Fig. 7 and Fig. 8 ). The test program
can be then configured by a list of arguments to select the
input geometry type, the selected geometry setup and the
destination geometry model or XML output.

The testing procedure has been automated by a test suite
shell script, which executes the test program with all possi-
ble combinations and generates the output that can be com-
pared with the reference output.

Figure 5: The geometry setup to test solids

Figure 6: The geometry setup to test placements

Figure 7: The geometry setup to test Boolean solids



Figure 8: The geometry setup to test reflections

EXAMPLES

As the test program, being written for the purpose of
testing all aspects, is rather complex, four simple exam-
ples demonstrating use of the VGM for converting native
geometries are provided. The summary of the use cases
demonstrated in these examples is given in Table 4.

Table 4: Summary of examples
Use case Geometry source

E1 G4 - � Root Geant4 novice example N03
E2 Root - � G4 Root file with geometry

generated in E1
E3 G4 - � XML Geant4 novice example N03
E4 Root - � XML Root tutorial macro rootgeom.C

PRESENT STATUS

Both VGM implementations for Geant4 and Root geom-
etry models are well advanced, below we give the lists of
supported and unsupported features for both models.

Supported features:

� Most of the solids: all CSG solids and some specific
solids - G4Polycone, G4Polyhedra in Geant4 and their
counterparts in Root

� Boolean solids (Geant4) and composite shapes (Root)
� Reflected solids (Geant4) and positioning with reflec-

tion (Root)
� Replicas (Geant4) and divisions (both Geant4, Root)

Unsupported:

� “Exotic” solids - solids that have no counterpart in the
other geometry model

� Parameterised volumes (Geant4)
� Positions with the “MANY” option (Root)

� Boolean solids (in the XML exporter)

The first version of the tool is available at [8].

CONCLUSIONS

The VGM introduces a general approach for conversion
of geometries between specific models. At present, it can
be used for conversion between Geant4 and Root TGeo
geometry models in both directions and conversion from
both these models in XML (AGDD and GDML) formats.
This gives the possibility for a user of one specific pack-
age to use the tools supported by other packages: the Vir-
tual Monte Carlo [1] via the Root geometry package and
GraXML [7] via XML.

The VGM also allows the user first to define the geom-
etry independently from a concrete geometry model, and
then to choose the concrete geometry model at run time,
though this use case was not the primary goal of this tool.

REFERENCES

[1] By the ALICE Collaboration (I. Hrivnacova et al.), “The Vir-
tual Monte Carlo”, CHEP’03, La Jolla, California, March
2003, eConf C0303241:THJT006,2003.
http://root.cern.ch/root/vmc/VirtualMC.html

[2] http://wwwasd.web.cern.ch/wwwasd/lhc++/clhep/

[3] S. Agostinelli, et al., “Geant4 - A simulation toolkit”, NIM A
506 (2003), 250.
http://wwwasd.web.cern.ch/wwwasd/geant4/geant4.html

[4] By ALICE off-line Collaboration (R. Brun et al.), “A Geo-
metrical Modeller for HEP”, CHEP’03, La Jolla, California,
March 2003, eConf C0303241:THMT001,2003.

[5] Ch. Arnault et al, “Atlas Generic Detector Description in
XML”, CHEP’01, Beijing, September 2001, 8-001.

[6] R. Chytracek, “The Geometry Description Markup Lan-
guage”, CHEP’01, Beijing, September 2001, 8-009.
http://gdml.web.cern.ch/gdml/

[7] J. Hrivnac, “GraXML - Modular Geometric Modeller”,
CHEP’03, La Jolla, California, March 2003, eConf
C0303241:THJT009,2003.
http://hrivnac.home.cern.ch/hrivnac/Activities/Packages/GraXML

[8] http://ivana.home.cern.ch/ivana/VGM.html


