AN EMBEDDED LINUX SYSTEM BASED ON POWERPC

Ye Mei, Guanjuan, Tian Yurun, IHEP, Beijing, P.R. CNINA
Chu Yuanping, Zhu Kejun, Zhao Jingwei, IHEP, Beijing, P.R. CNINA

Abstract

This article introduces an Embedded Linux System
based on VME series PowerPC as well as the essential
method on how to set up the system. The goal of the
system is to build a testbed for VMEbus device of Front-
End Electronics. It also can be used to set up the data
acquisition and control system. Two types of compiler are
provided by the developer system according to the
features of the system and the PowerPC. At the top of the
article some typical embedded Operation system will be
introduced and the features of different system will be
provided. And then the method on how to build an
embedded Linux system as well as the key technique will
be discussed in detail. Finally a successful data
acquisition example will be given based on the test
system. |

INTRODUCTION

It has been 12 years since the commission of the
Beijing Spectrometer (BES) at Beijing Electron Positron
Collider (BEPC). Both machine and detector have
undergone the upgrade. According to the machine design
and physics goals, BEPCII is designed with a peak
luminosity of 10¥cm™sec”. After Level 1 trigger, the
estimated event rate will be about 4000Hz at J/ w peak.
The total channel number of electronics will be up to 40K,
among which there will be 30K ADCs and TDCs. The
new electronics will up to higher event rate and has much
more noise environment. The DAQ system will adopt
embedded real time operation system (RTOS) and
corresponding programming techniques to fit the readout
requirement of the Front-End Electronics (FEE).

Considering the high price of the commercial RTOS
such as VxWorks, LynxOS, the main purpose of this
paper is to discuss the possibility of using the embedded
real-time Linux as the operating system of the readout
system.

The Readout System

The main tasks of the readout system are collecting
event data from the front-end electronics after Level 1
trigger; transferring data fragments from the VME
readout crate to the readout PC which related to online
computer farm through two levels of computer pre-
processing and high speed network transmission. The
system is designed to adopt Motorola’s PowerPC as the
front-end processor to readout data from the FEEs. On the
basis of real-time operation system, the advanced
computer and network technologies, multi-level parallel
data collecting/processing schemes will be adopted. The
readout system is intended for work with the readout

electronics. Before the start of run, it performs
initialization and calibrations of sub-systems; during the
run, it reads data from the VME readout crates, each
holding a system controller and some FEE readout
modules (ADC and/or TDC). The VME processor,
PowerPC, an embedded single board computer is used to
collect, pre-process and transfer data. Several readout
crates are connected to a readout PC through fast Ethernet,
thus constituting a readout branch. All the readout
branches are connected to the online computer farm
through gigabit switch, constituting the backbone of the
DAQ data flow. Sub-event packages, coming from each
readout branch, are assembled in the online computer
farm. After being filtered and processed, the events are
recorded in persistent media.

RTOS

As a general-purpose operating system, Linux is
optimized for average performance across all types of
applications. While this is suitable for most desktop and
server environments, it poses problems for environments
where the performance or behavior of some applications
is sensitive to the latency of response. The TimeSys Linux
kernel enhancements are geared to improve and give
better control to application developers on the latency of
response that they can achieve. These enhancements
include a fully preemptible kernel, schedulable hard and
soft interrupt processing, an enhanced low-latency
scheduler, and improved process time accounting.

TESTBED ARCHITECTURE

In order to check if the designed system can read out
large amount of data from the FEEs and fit the
requirement of high frequency data acquisition, The
testbed is designed on a VME crate as figure 1 showed. A
PowerPC named MVMES5500 is used as the VME
processor to collect data from FEEs. Another PowerPC
named MVME2431 acts as electronic modules, which can
generate VME interrupt and Monte Carlo (MC) data.
Both of the PowerPCs are placed at the same VME crate.
An x86 PC so called host machine supports develop
console, net file system (nfs) and related cross compiling
tools, on which installed with TimeSys Software
Development Kit (SDK) and TimeSys Storm, an
Integrated Development Environment (IDE). The PC
installed TimeTrace, a Windows-based profiling
environment, could provide execution data from the
runtime target and reveals the critical events happening in
the application, such as context switches, timer events,
scheduling events, and more, so the problem areas can be
pinpointed through the Ethernet. The data fragment
collected by the MVMES500 will be packed and

mailto:pc-secretary@chep04.org

Online Software,Linux

| Gigabit Ethernet

Readout PC
RH 7.3~9.0

RH 7.3~9.0

©
[] Host X86

* TimeSys SDK & IDE Env.

ﬁ Debug

100M Ethernet

TimeSys Analysis Tools *

Windows
¢

¥

Host X86

| FEEs

H PowerPC:
= MVMES5500

TimeSys Linux Target

Figure 1: The system Architecture of the experimental environment

transferred to the readout PC, which pack the data of the
several crates and submit to the online software. To
accomplish above tasks, the experiment system must be
designed to have the following functions:

* To collect data from the VME readout modules
(ADC and TDC) at high speed and full utilize the
VME bus bandwidth;

* To set up the multi-level buffering techniques that
solve the “bottleneck” problem caused by the
VME data fragments assembling and the network
transmission;

* To use the necessary task synchronization strategy
and software protocols that ensure the correct
parallel processing;

* To build the effective channel between the kernel
module and the user module;

e To provide the corresponding program that
simulate the Front-End FElectronics modules to
generate the VMEbus trigger and Monte Carlo
data;

e To establish the APIs between the readout code
and the online software.

The PowerPC Board: MVME5500

The MVMES5500 showed in figure2 is a single-board
computer based on the PowerPC MPC7455 processor and
the Marvell GT-64260B host bridge with a dual PCI
interface and memory controller. On-board payload
includes two PMC slots, two SDRAM banks, an
expansion connector for two additional banks of SDRAM,
8MB boot Flash ROM, one 10/100/1000 Ethernet port,
one 10/100 Ethernet port, 32MB expansion Flash ROM,
two serial ports, NVRAM and a real-time clock. The
MVMES500 interfaces to a VMEbus system via its P1
and P2 connectors. The 1M Flash ROM was configured a

Figure 2: PowerPC, MVMES5500

firmware package named MOTLoad. The main function
of the MOTLoad firmware package is to serve as a board
power-up and initialization package, and to serve as a
vehicle from which user applications can be booted.

DESIGN AND IMPLEMENTATION

Develop Environment and the Linux Kernel
Configuration

The TimeSys Linux distribution provides a complete
Linux runtime and development environment that
executes on the target board and reference host machine
including compilers, debuggers, and other utilities as
command-line. The TimeSys Linux SDK includes the
GNU C language compiler. One of the most interesting
aspects of GNU C compiler is that it is designed for use
as both a native and a cross compiler.

* The cross compiler, which executes on the desktop

host machine development system but produces

binaries that can run directly on the target
hardware: PowerPC.

e The native compiler for the target board, which
executes directly on the PowerPC and produces
binaries for it. The gcc is located in the NFS-
mounted root file system used by the SDK when
booting Linux on the target board.

The TimeStorm is an integrated development
environment for Linux that runs on both Linux and
Windows systems. It provides a graphical display of local
and remote debugging. It is also tightly integrated with
the tools provided in the SDK.

The runtime kernel was precompiled with an export
NFS root file system. However, in some cases, we should
have to recompile the kernel in cases of adding or
removing device drivers, protocols, or simply to more
accurately reflect particular hardware configuration. A
kernel configure file named ‘.config’ is provided. The
UNIVERSE driver, IP setting and DHCP configuration of
the PowerPC was changed and rebuild through the
configure file.

BSP: The Universe I

The Universe IT (CA91C142) is the de facto industry
standard PCI bus to VMEbus bridge, providing 64-bit, 33
MHz PCI bus interface, produced by Tundra Co. The
function involved in interfacing VMEbus to PCI includes:
address mapping, byte-lane swapping, and cycle mapping.
Which can provide multi-master, multi-processor
architectures on VMEbus systems using PCI.

System Latency

In order to measures the ability of the system to meet
latency or response time requirements we test on the
following ways of measuring RTOS predictability and
performance:

* VME read and write(R&W) time

* Task Context Switch Time

* Network overhead

* DMA read overhead

e VME interrupt response time

The VME R&W time measures the system latency on
behave of VMEBus read and write operation, the results
are 1942 ns and 407 ns respectively.

The task context switch time assesses the most
common types of overheads in a system. These are
measured in the absence of resource contention, and
provide information on the performance of the operating
system for throughput sensitive applications. To measure
the context switch time, two threads with identical real-
time priorities are set up. Both threads execute a while
loop, and continually yield to the other thread by calling
the sched yield() system call. Timestamps are taken
before and after yield. The timestamps from the two tasks
are post-analyzed to generate context switch times.
Context switch time is measured under a "no-load"
scenario: no additional non-system processes are created
to increase the system load. The context switch time as
table 1 showed measures the observed value of context

switch time, and at a minimum includes the raw context
switch time, the scheduling overhead (which is minimal
for the way the test is set up), the cost of sched yield (),
and the cost of crossing the user-kernel boundaries. In
addition, in some cases the observed value may include
the cost of handling any interrupts, and any blocking from
shared locks in the kernel.
Table 1: Context Switch Time Summary
(Numbers given in Nanoseconds)

Context Switch
Mean | Min Max Std Dev
3000 3000 3000 0
About the networking performance, the system

occupies about 15% of CPU time for sending 1024 Bytes
data block continually with about 93Mbps throughput.

The DMA read latency time measures the interval
spending on the whole DMA read operation including
start the DMA read, complete the data transfer and
receive the DMA controller interrupt return. We test the
value from 1Byte through 16,384Bytes, which has the
graph as below:

A24/D64
A24/D32
linearity (D32)
—linearity (D64)

us ¢
900 "
800 r
700
600
500 F
400 F
300 r
200 r
100

y = 0.0495x + 17.055

y = 0.0238x + 16.607

Bytes

0 5000 10000 15000 20000

Figure 3: DMA Overhead

From above figure we can see two lines. One is the
trend line of reading A24/D32 VME data block and the
other is reading A24/D64 VME data block. Both have the
system overhead of 17 1 s through the DMA transfer. This
overhead includes DMA initialisation, DMA controller
starting, the latency of DMA interrupt response and the
time returning to the user level.

The VME interrupt response time is the length of time
between when the VMEbus hardware interrupt is asserted
and the time corresponding task begins execution. This
includes the interrupt latency time, scheduling time,
VMEDbus handshake and time to return to user-level task.
The handshake means we use a VME R&W to control the
source interrupt device to either generate a VMEBus
interrupt signal or pending. The VME interrupt response
time measures the ability of the system to meet latency or
response time requirements in a system. The periodic task
is used to measure the interrupt response time as follows:
a periodic task suspends itself to be awakened when its

period expires, and a timer that expires periodically is
associated with the periodic task. A timestamp is recorded
when the periodic task wakes up, and the program then
records the difference between the timestamp and the
period expiry time. The kernel RTOS is able to get very
tight response time (average 14 1 s) under heavy network
throughput and computing load. This is benefit from the
changes made in the Linux kernel and real-time modules,
such as adding kernel preemptibility, prioritizing IRQ and
soft-IRQ activity, minimizing interrupt mask times,
priority inheritance mutexes, and adding high accuracy
clocks and timers etc.

The Readout Module

In the readout module as the figure 4 showed the
PowerPC is used to read data from the electronic modules
through VMEbus. The FEE generates VMEbus interrupt
and Monte Carlo(MC) data. The MC data block size is
fluctuant and has the average size of 640 bytes. To
simulate the readout process three threads with different
real-time priorities are set up: the dma task, the pack task
and the net task. The dma task is used to response the
event trigger and collects data from the electronic readout
modules. The pack task builds the raw data and writes the
data into another ring buffer shared by net task prepared
for the network transfer. The net task sends the data to the
readout PC, which will build the whole data from the
subsystem and communicate with online software. Two
ring-buffers are used to buffer the data: the dmaRng and
the netRng. The dmaRng is set to load the raw data
collected by the dma module. The netRng is set to store
the built data from the pack module. Two message queues
are used to ensure the threads synchronization. The reason

we use message queue is the fluctuation of data block size.

The message queues and the ring-buffers make the
readout modules parallel as following way: Once the dma
module catch the event of VME interrupt it will start
transfer data and send a message to pack module telling a
block of data size. And then inform the VMEbus to
enable the next interrupt by a VME R&W handshake.
During the DMA data transfer the CPU is released to do
data packing and network transmission. The CPU
overhead and the event rate are used to measure if it can
fit the readout requirements.

The message queues here we used is the POSIX
message queues implemented by TimeSys Linux/Real-
Time in addition to the standard System V messages
queues that have long been part of the Linux kernel.
Traditional System V message queues have two main
shortcomings in the context of real-time application,
shortcomings that POSIX message queues avoid. First,
the corresponding function for reading a message queue
from a POSIX message queue, mq _receive (), reads the
oldest message with the highest priority, while the
message queue of System V can return a message of any
desired priority. Second, the POSIX queues can generate
a signal of start a thread when a message is enqueued on a
previously empty queue. System V message queues lack
such a facility.

Online Software

<
=
m
w
c
”n
Trig.
H.S.
Front End
Electronics

Figure 4: The Software Structure

The Response Jitter

The response jitter is the length of the response time
between the two VMEbus interrupt under the heavy task
context switch and network load. Measurements are
conducted under the same conditions as the readout
program except for the configuration of the buffer full and
pack task. So that the jitter cannot affect by the task
strategy controlled by the semaphore.

As the results indicate that TimeSys Linux/Real-Time
is able to get very tight response time even under heavy
background system load. This is a direct consequence of
the changes made in the TimeSys Linux kernel and real-
time modules, including adding kernel preemptibility,
prioritising IRQ and soft-IRQ activity, minimizing
interrupt mask times, priority inheritance mutexes, and
adding high accuracy clocks and timers.

CONCLUSIONS

As experiment discussed above the strategy using the
embedded real-time Linux as the operating system of the
PowerPC is able to fit the essential requirement of the
readout system. In addition to the task of readout and net
transmission there is still enough CPU idle to ensure the
stabilization of the system. Considering the nice price and
performance of the TimeSys Linux/real-time the DAQ
could take into account the possibility of adopting the
real-time Linux.

REFERENCES

[1] http://www.timesys.com/.
[2] TimeSys Linux/Real Time User’s Guide.
[3] TimeSys Benchmark Report SDK.

