
CONTROL AND STATE LOGGING FOR THE PHENIX DAQ SYSTEM *

E. Desmond, for the PHENIX Collaboration, BNL, Upton, NY 11973, USA

Abstract

The PHENIX DAQ system is managed by a control
system responsible for the configuration and monitoring
of the PHENIX detector hardware and readout software.
At its core, the control system, called Runcontrol, is a
process that manages the various components by way of
of a distributed architecture using CORBA. Runcontrol is
the governor of virtually all aspects of the operation of the
online system. We will use a particular component of the
distributed system, the messaging system, to showcase
several key aspects. The goal of the system is to
concentrate all output messages of the distributed
processes, which would normally end up in log files or on
a terminal, in a central place. The messages may originate
from or be received by applications running on any of the
multiple platforms which are in use including Linux,
Windows, Solaris, and VxWorks. Listener applications
allow the DAQ operators to get a comprehensive
overview of all messages they are interested in, and also
allows scripts or other programs to take automated action
in response to certain messages.
Messages are formatted to contain information about the
source of the message, the message type, and its severity.
Applications written to provide filtering of messages by
the DAQ operators by type, severity and source will be
presented.
We will discuss the mechanism underlying this system,
present examples of the use, and discuss performance and
reliability issues.

OVERVIEW

 The purpose of the DAQ messaging system is to achieve
maximum available uptime of the PHENIX DAQ system
in order to make full use of the available beam supplied
by the Relativistic Heavy Ion Collider (RHIC) facility.
The DAQ system consists of in excess of 50 distributed
processors which are required to configure, monitor and
control the DAQ detector components. To effectively
control such a system, it is essential that error, process
state and component monitoring information be made
available to DAQ operators and to DAQ control
applications in such a way that actions can be taken on the
changing conditions in a timely manner.

 The messaging system accomplishes this by providing a
message stream into which the control applications can

insert error, status, and monitoring messages. This
message stream is available to all control and monitoring
applications such that the messages can be delivered to
DAQ operators or be acted upon by the applications. A
major (secondary) goal of the message system was be
easily integrated with legacy C++ and Java based DAQ
code with minimal code changes. The system system was
also to provide integration to a database for message
archiving, and to provide an interface to applications
which can provide services such as message filtering and
which can provide programmatic action if necessary.
 These design goals are achieved by basing the message
system on CORBA Event Service and by providing an
interface to applications code through a custom Streambuf
class for C++ applications. These technologies are
described next We are using IONA Technologies
OrbixAsp 6.1 implementation of CORBA for the Linux
platforms, version 5.1 for Solaris and IONA’s Orbix/E
version 2.1 for the VxWorks platforms.
.

CORBA EVENT SERVICE

 The CORBA Event Service is a standard services
defined by the OMG for the decoupled delivery of
messages or events from one application to one or more
consumer applications. The Event Service is based on a
publish / subscribe architecture. It is an architecture where
message producers publish messages directly to the event
service. Message consumers receive messages by
registering an interest with the event service in a
particular subject. It is the responsibility of the event
service to deliver messages to all registered consumers.
The message producers publish their messages by
connecting to one or more event channels which are part
of the Event Service. Consumer applications, with an
interest in receiving messages on a particular subject,
register with one or more event channels. The event
channels function as independent streams of messages.
All messages sent to an event channel are delivered to all
registered consumers. Using the event service message
producers and consumers are not directly connected to
each other, but are loosely connected to each other
through an event channel.
 There may be many event channels used in the Event
Service, each of which is identified by a unique name.
Any number of suppliers can issue events to any number

of event channels. Multiple consumers can each subscribe
to multiple event channels.
 With the event service, messages which are sent
between producer and consumer applications are sent
asynchronously. Producer applications do not block on
the delivery of messages while the consumers receive the
messages. The event channel buffers messages while
consumers digest them.
 The event service operates in either a push or pull
model of message delivery. In the push model, event
suppliers initiate the transfer of a message by sending the
message to the event channel. In the pull model, the
message consumer initiates the transfer of a message by
requesting the delivery of a message [1].

DAQ use of the Event Service
 In the DAQ system, multiple event channels are used to
separate the messages from different detector subsystems
and to separate control and process state information from
monitoring information. This leads to improved message
delivery performance and simplified consumer
applications as consumers register only with channels
whose message content they are interested in. Operators
can monitor control state transitions or error conditions by
opening message stream monitoring applications at the
appropriate channel of interest. This also simplifies the
consumer applications as they do not have to parse
through the message content for messages of interest or
importance to them.

Advantages of using the Event Service
 By basing the message system on the CORBA Event
Service, producer applications have no direct knowledge
of the consumers applications which receive the
messages. Thus no code changes are required by the
producer application to issue events to the consumers.
Messages are only sent to the event channels. Consumer
applications may come and go as they wish with no effect
on the performance or delivery of messages on the
producers part.
 By using the Event Service for message delivery,
network bandwidth and processor cpu cycles are not
wasted polling the applications for their status. The
callback method could also be used for control
application update of a state change in a server. However,
the use of the callback mechanism requires that server
applications handle clients which fail to unregister when
they are no longer available. In addition, callback
mechanisms closely couple the client to the server
application [2]. .

Cross Platform transparency
Message producer application in the DAQ system run

on Scientific Linux distribution from FermiLab, Sun
Solaris 2.6 and 2.8, and Wind River’s VxWorks 5.2.
Messages are sent and received between applications
running on all three platforms. The use of the event
service allows the producer and consumer applications to

ignore the differences in operating systems, byte order
and language implementation. All marshalling and un-
marshalling of messages take place transparently to the
user application, within the CORBA framework.

Push Model Implementation
The message system, is implemented using the push
model of the CORBA event service In the DAQ system, it
is the error or process completion operation which is the
immediate cause of a message to be initiated. When such
a condition occurs, the server then pushes the information
into the message stream.

Application Interface
 At the time of the development of the message system,
there was already in place a large body of largely C++
based server code. It was desirable for the design of the
message system was to provide a simple interface to the
application level code such that the message system could
be added to this legacy code with minimal code
modification. The existing legacy code already contained
much embedded diagnostic printout statements. We
wanted to ensure that the existing diagnostic messages
were uniformly forwarded to the message system
automatically. This would ensure that all diagnostic
messages would be received without requiring the
application developers from going through each line of
code to redirect the output to the message system. We
have done this by overloading the standard C++
Streambuf class. Messages are sent to the custom
Streambuf class through the iostream insertion operator
<<. The custom streambuf class provides an overloaded
sync function which gets called when the stream buffer
gets flushed as a result of the endl osteam operator being
called. The sync function takes the text which was
inserted into the ostream, formats it into the MsgStruct
structure, then pushes the structure into the CORBA
event service. User applications associate text with
messages of specific severity, type and source identity by
creating instances of the custom streambuf class.
Constructor parameters of the class identify it type,
severity and source. Each message class can be associated
with a different named channel. Thus each subsystem of
the detector can be associated with its own event channel.
An example of a typical message interface is the
following:

 // create class to overload streambuf and connect to
// the event service
Messages mybuffer(orb,root_poa,channelName,256);

// overloads ostream operator to format message to
// type specified in constructor
msg_control *rcmsg = new msg_control(

MSG_TYPE_CONTROL,
 MSG_SOURCE_RC,

MSG_SEV_WARNING," rcserver ");

Msg_control * errmsg = new msg_control(

MSG_TYPE_CONTROL, MSG_SOURCE_RC,
MSG_SEV_ERROR,”runcontrol”);

// send warning message
 cout << *rcmsg << "run control warning" << endl;

// send error message
cout << *errmsg << “error warning “ << endl;

Message Structure
 Messages pushed into the message system are formatted
into a message structure. This structure is defined in an
IDL file. IDL is the descriptive language which is used by
CORBA to define the interfaces and data types which can
be marshalled between applications. The structure
contains fields to identify the message type, source,
severity, source component name, and a text field for
error specific message description. The message type
identifies whether the message is from a control
operation, a debug message or other type. The available
message types are listed in Table 1.

Table 1: Message Types

MSG_TYPE_ONLINE
MSG_TYPE_OFFLINE
MSG_TYPE_MONITORING
MSG_TYPE_CONTROL
MSG_TYPE_CODEDEBUG
MSG_TYPE_RUNTIME
MSG_TYPE_DEFAULT

Message source identifies which subsystem the message
originated from, while the componentname field identifies
a particular computer host, or component that is the
source of the message.
 The Message structure consists of the following
definition:

struct MsgStruct {
 long type;
 long source;
 long severity;
 long reserved1;
 long reserved2;
 long reserved3;
 string componentname;
 string message;
};

UTILITY APPLICATION

 While the message delivery mechanism provides for the
delivery of messages, it does not provide the applications

which make use of those messages. One very useful
application we have developed is the message display
utility. This is a Java based application which provides for
the display of messages to the detector operators. The
application gives the machine operators the ability to
filter messages by message type, source or severity. Thus
operators can view messages which are selected by their
severity, or whether they came from a particular
component. This is an important quality of service feature
which more will be said of later. This utility has proven to
be a key diagnostic tool for the detector operators.
 A separate logging utility has been developed whose
function is to archive the messages. This application
listens on all event channels. It currently logs all
messages to an ascii log file. The log file name is
identified by date and run number to allow operators to
review control operation flow or error trace. This utility is
currently being updated to archive the messages into a
Postgres database to enable the use of SQL statements to
simplify the search for error and status information.

Performance

Measurements were made of the event delivery rate
from message suppliers to consumers. The test varied the
number of suppliers and consumers as well as the number
of channels over which the events were sent. In all cases,
the supplier and consumer processes were running on 1
Ghz Pentium 4 PCs running the Fermi Lab release of
Scientific Linux. The table shows that the throughput of
the event has delivered over 500 messages per second.

Table 2: Event Delivery Performance

Suppliers Consumers Event
Channels

messages /
second

1 1 1 833

1 4 2 1012

2 2 2 594

20 1 1 833

20 1 2 869

20 20 1 743

20 1 20 754

200 1 1 833

200 1 2 800

ISSUES AND UPGRADES

 Guaranteed delivery
 The CORBA event service does not in itself guarantee
delivery of events. Most CORBA vendors provide for
buffering of undelivered events within the event service,
which is provided with IONA’s implementation. While it
is certainly possible to lose events, we have not reached
the performance capacity of this service in past data
taking runs. However, for guaranteed delivery the use of
the CORBA Notification service provides such a
guarantee. In addition, the CORBA Notification service
provides such quality of service features as event
persistence, event filtering and priority to events. In the
Notification Service, event filtering can be specified at
different levels so that only messages of a desired content
are delivered. At this time, we implement this feature in
user level applications. At the time of the original
implementation of the message system, the Notification
Service was not available on the VxWorks platform and
so could not be used in the previous runs. However,
implementations of the CORBA Notification service for
the VxWorks platform have since become available.

Implementation experience
 In order for VxWorks based applications to create

event channels in the Orbix event service implementation,
they must be able to get a reference to the Orbix event
channel factory class. The VxWorks based applications
are built using Orbix/E for its CORBA implementation.
This orb implementation was originally developed by
Object Oriented Concepts, Inc. for their CORBA
implementation product Orbacus. Naturally, this
implementation does not know about the scope
specification of the IONA EventChannelFactory object
which is necessary to get a reference to from the event
service. Thus in order to enable applications which run

under VxWorks to create channels in the Orbix event
service a custom factory class was necessary to resolve
this scope issue. We have done this with a custom
EventChannel factory class.

FUTURE DEVELOPMENT

While the architecture of the event service has is
appropriate for the needs of the DAQ system, the event
service lacks the quality of service features which are
present in the CORBA Notification service. While we
have yet to encounter any of the limitations of the event
service in terms of event and channel persistence, the
availability of such features are desirable.

CONCLUSION
 The use of the CORBA Event Service as a bases for

the messaging system of the PHENIX DAQ system has
proven to be useful and productive. The loosely coupled
architecture has reduced code maintenance efforts and
reduced development time. The system has proven to be
scaleable to meet expanded demands and is an effective
tool in system diagnostics.

REFERENCES
[1] http://www.omg.org/.
[2] Henning and Vinoski,“Advanced CORBA

Programming with C++”,Addison
Wesley,1999,p.930

