
 PORTING LCG APPLICATIONS
J.A. Lopez-Perez, I. Reguero CERN, Geneva, Switzerland

Abstract

Our goal is twofold. On one hand we wanted to address

the interest of CMS users to have the LCG Physics
analysis environment on Solaris. On the other hand we
wanted to assess the difficulty of porting code, written in
Linux without particular attention to portability to other
UNIX imple mentations. Our initial assumption was that
the difficulty would be manageable even for a very small
team. This is because the implicit respect by Linux of
most UNIX interfaces and standards such as the IEEE
(PASC) 1003.1 1003.2 specifications.

We started with the LCG External software
(http://spi.web.cern.ch/spi/extsoft/platform.html) in order
to use it to build the LCG applications such as POOL and
SEAL (http://lcgapp.cern.ch/project/). We will discuss the
main problems found with the system interfaces as well as
the advantages and disadvantages of using the GNU
compilers and development environment versus the
vendor-provided ones.

INTRODUCTION

The world’s largest and most powerful particle
accelerator, the Large Hadron Collider (LHC), is being
built at CERN [1], the European Organization for Nuclear
Research. The computational requirements of the
experiments that will use the LHC are enormous: over
1000 PetaBytes of data will be generated each year. The
job of the LHC Computing Grid project (LCG) [2] is to
prepare the computing infrastructure for the simulation,
processing and analysis of LHC data by deploying a
worldwide computational grid service.

The Applications area [3] is one of four activity areas in
the LHC Computing Grid Project. The work of the
Applications area is conducted within five projects:
Software Process and Infrastructure (SPI), persistency
framework (POOL and conditions database), core
libraries and services (SEAL), physicist interface (PI),
and simulation.
In particular, the SEAL project [4] is to provide the
software infrastructure, basic frameworks, libraries and
tools that are common among the LHC experiments. The
SEAL package is required by POOL and PI.

SYSTEM ENVIRONMENT

We chose Solaris 8 as the target environment because it is
the leading commercial Unix implementation and CMS

users had expressed interest in having the LCG
environment on Solaris.
Although the interest of the LCG community in this
platform seems to be decreasing, it still is a good example
of a Unix implementation other than Linux and most of
the problems found would apply in porting to any other
commercial Unix or POSIX 1003.1 1003.2 compliant
operating system.
We chose the GNU compilers because they have been
used to develop most of the code and their portability
guarantees porting with minimal code changes.
The Sun compilers seem to provide better performance on
Solaris, but lack of support for some C++ template
features, such as templates with template arguments
would make the port more complicated.
We do not have the GNU binutils package available on
Solaris so we have to use the Sun linker to make shared
libraries and dynamic executables. We also have to use
the Solaris dynamic linking mechanisms. In this
environment the GNU options, such as “–shared”, are not
understood by the linker, so we have to use the “-
Wl” gcc option to pass options to the sun linker directly.
The typical options required are “-G” to make shared
libraries and “-h” to set the internal name of the libraries.
We have built all object files, including the External
Software ones, as pure text using the “-fPIC” gcc option
in order to avoid errors due to relocations against non-
writable, allocatable sections when building shared
libraries and dynamic executables.
We use the default instruction set architecture available in
our environment, this is ILP32, this is SPARC V8
architecture as defined by Version 8 of the SPARC
Architecture Manual. However we have to emulate the
behaviour of the Sun compiler (ANSI C plus K&R C
compatibility extensions) by defining __STDC__ = 0 for
the system headers to define the explicit 64 bit types, such
as int64_t and unit64_t required by SEAL in 32 bit
environment. These types are implemented using the
“long long” type of gcc.
We also had to make sure that other “longlong” types
defined by the ReflectionBuilder in SEAL are identified
with the explicit 64 bit types as otherwise they were not
recognized as identical when building the dictionary.
In this environment we have ported SEAL 1.3.3 and all
the required External Software.

EXTERNAL SOFTWARE

Most of the following ported programs are installed

using the ”configure + make + make install” method with
the appropriate options. There are many variations in

which they also use some ”make check” or ”make test”
step or no ”configure” or ”make install” command is
necessary so the method cannot be guessed before reading
carefully the installation instructions. In other cases the
installation method is completely different involving other
tools, ad hoc scripts, compilation of special files in some
directories, links, etc. In principle we ported just the
version required by SEAL, POOL and PI but we also
ported other program versions in the cases in which the
SPI project supports them or when the required version
gave some problem

• Bison 1.875: As is written in the Doxigen
package installation instructions, ”Versions 1.31
to 1.34 of Bison contain a ‘bug’ that results in
compiler errors (. . .) This problem has been
solved in version 1.35”. Then, we installed the
latest version of Bison, the 1.875 one that
worked fine.

• BLAS 20030829: This product does not use the
usual installation method. It requires a
compilation of several FORTRAN ?les into
different directories.

• Boost 1.30.2, 1.31.0 : Required by SEAL, POOL
and PI. This package uses an installation method
based on the ”Jam” program. The installation of
the 1.30.2 version, required by SEAL, fails
because of incompatible linker options. The
latest version, 1.31.0, was installed without
errors but SEAL gave symbol referencing errors
while installing because of the changes between
the two versions, so we decided to correct the
previous one. We needed to modify the compiler
commands in the Jam configuration for Boost
(gcctools.jam) to pass the right options to the
Solaris linker to make shared libraries.

• bz2lib 1.0.2 : Required by SEAL. We had
problems when building the shared library
libbz2.so because the Makefile was assuming
RedHat 7.2 Linux on an x86 box. To solve the
problems, we needed to change the gnu linker
options to the Sun ld ones. We used ”-G -h”.

• CERNLIB 2003: Required by CompHEP. The
CERNLIB maintainers regularly make this
package in Solaris, however the latest currently
ported version is the 2002 one so we tried to port
it anyway. It uses its own installation method
using its own scripts so it’s difficult to trace
compilation errors when found. There were
problems related with compiler and linking
options because the scripts assume the Sun com-
piler and there are no options to change these so
we had to find and edit the required files.

• CLHEP 1.8.1 : Required by SEAL and PI. It
needs a compilation of specific files on a
temporary directory and manual creation of
links.

• CMake 1.8.3: This compilation tool is used by
the GCC-XML package. The compilation gave

symbol referencing errors. Anyway we
downloaded compiled binaries for Solaris from
the official web page. They were compiled for
Solaris 7 but we got no errors using them with
Solaris 8.

• CppUnit 1.8.0, 1.10.2 : Required by SEAL and
PI. This package was already ported by the SPI
project to Solaris but they used the Sun compiler
instead of gcc so we had to redo it. It gave errors
when compiling on an AFS directory so we had
to compile it in a local file system. One of the
tests failed (the hierarchy one) so we tried the
latest version, 1.10.2. That one passed all the
tests.

• Doxygen 1.3.3, 1.3.7 : There were two problems
installing the documentation because the
Makefile did not find an image (we can make the
documentation without that) and it did not make
the table of contents. This problem was solved
just by running the ”make pdf” command twice.

• Expat 1.95.5: Required by PI.
• GCC-XML 0.4.2: Required by SEAL, POOL

and PI. It requires a compilation program called
CMake. It gave no installation errors using the
method described in the package documentation
but afterwards we found that a module was
missing. To solve the problem we had to perform
a procedure to patch the cc1plus program of the
gcc 3 compiler replacing a file (xml.c [7])
distributed by the SPI project. We also found
that when gccxml called the cc1plus binary,
some compiler flags were lost along the way so
gcc couldn't find some headers and didn't take
the right options. To solve the problem we had to
change the share/gccxml-0.4.2/config file
adding all the missing C preprocessor symbols
and include directories to the
GCCXML_USER_FLAGS entry. We obtained
these settings by running gcc in verbose mode.

• GSL 1.4: Required by SEAL and PI.
• Jam 3.1.9: This program is required to install

Boost. It’s installed using its own script.
• IgProf 1.3.0 : This is a profiling tool working

only on x86linux machines.
• LAPACK 3.00: To install this package we had

to modify the INSTALL/make.inc file. We must
give there a platform name, used to create a
directory with the built libraries, and the
appropriate compiler name and options. We had
to change the options in order to make shared
libraries in Solaris.

• MySQL 4.0.13: Required by POOL. The
MySQL developers recommend using the
binaries they provide and they have already
made the Solaris port. Anyway, the SPI project
installed that version with their own compiler
options so we did the same. We got no errors but
one test failed, the func_crypt one.

• MySQL++ 1.79 : Required by POOL. This
package uses the automake and autoconf tools
and, during the installation, we found a “missing
separator” error running the make command
related with an automake problem. The
installation of the latest autoconf version didn’t
solve the problem. Anyway, as documented in
the SPI project MySQL++ web page [8]: “As
mysql++ needs to be patched by the POOL team
(due to obsolete include style), they have decided
not to use it in the future. So, it will not be
compiled by icc/ecc and furthermore it will be
replaced by POOL internal functions”. Currently
MySQL++ is still required by the latest POOL
version, 1.7.0, but in the near future it will not be
required anymore.

• OPro?le 0.7.1 : This is a platform-specific
profiler for x86-linux so we have not made the
port for this package. Anyway, it is not required
by SEAL or POOL.

• Otl 4.0.67: Required by POOL. It is just a C++
library which we copied without compilation.

• Oval 2.15.3, 3.5.0 : Required by SEAL and
POOL. The version ported by the SPI project
was 2.15.3 but we realized that the version
required for SEAL and POOL is 3.5.0 so we
downloaded this version.

• Pcre 4.50, 4.40, 4.30, 4.20: Required by SEAL,
POOL and PI.

• Python 2.2.2, 2.2.3, 2.3.3 : Required by SEAL,
POOL and PI. The 2.2.2 version is the one
required by SEAL 1.3.3 and POOL 1.6.5 . We
changed the value of _FILE_OFFSET_BITS to
32 in the config header in order to be compatible
with the default settings in the Solaris. When
installing SEAL we realized that some of the
scripts distributed with Python in
lib/python2.2/xml were taken by precedence
over similar ones from the pyexpat program in
the PyXML[9] package that we were referencing
on the PYTHONPATH environment variable.
The solution to this problem is to install the
package in the python lib hierarchy. We had to
modify the Makefile in order to generate
libpython2.2 as a shared lib rary in order to
facilitate linking with SEAL.

• PyXML 0.8.3 : Required by SEAL in the cases in
which the pyexpat package is not installed by
default on Python. It is installed with a Python
script. We found a problem when installing
PyXML on an AFS directory that was accessible
to two users because when one user tries to run
the product, some .pyc files are compiled and
python fails when trying to regenerate them for
the second user because they are owned by the
first one. The problem can be solved by write-
protecting the whole installation just after the
installa tion.

• QMTest 2.0.3, 2.2.0 : Required by SEAL and
POOL. One Solaris version had been made by
the SPI project but no log information is
available so we cannot know which compiler
was used and we installed the package from the
source. We got some warnings and a failed test.
The latest version, 2.2.0, gave the same result.

• Root 3.10.02: Required by SEAL, POOL and PI.
We found three bugs that were preventing Root
from being installed on Solaris. They have been
reported and they were corrected on the 4.00.02
version, so they don’t affect the last SEAL
version, the 1.5.0 one which requires Root
4.00.08, but they affected the previous ones.
Anyway, we installed the required Root 3.10.02
version just modifying slightly three files to
avoid the bugs. We also got errors related to the
libpng and libungif libraries but they were
corrected by installing the latest versions of these
libraries.

• SCRAM 0.20.0: Required by SEAL, POOL and
PI. It is the software configuration, release and
management tool used by the CERN applications
[11]. It is installed using a Perl script that gave
no problems. Please note that the source
directory cannot be moved or renamed after we
install SCRAM because the program looks for it
with the same name and location. The documen-
tation is also on that directory and is not
installed. We had problems finding the sources
and the installation instructions due to the lack of
documentation. You can find them at [12].

• SLOCCount 2.22, 2.23: It doesn’t need to be
installed. You just need to run the make
command to build the executables and the man
pages on a predefinded directory.

• UnixODBC 2.26, 2.28: Required by POOL. As
done by the SPI project on the installed Linux
version, the GUI components were disabled
because they require Qt and it is not installed by
default on CERN ma chines.

• Uuid 1.32, 1.34, 1.35: Required by SEAL,
POOL and PI. This package needs a patch and is
part of the general Ext2 Filesystem Utilities
package (e2fsprogs). To install just the uuid
library you have to do the “make install” step
only in the lib/uuid directory. This will give
some errors if you are not root but you can
ignore them. We called the “make” command
using the “-e LN=cp” option. Installing 1.32 we
got some symbol referencing errors. The newer
1.34 and 1.35 versions work better and SEAL
can use them without problems.

• Valgrind 2.0.0 : Required by SEAL, POOL and
PI. This is a platform-specific memory debugger
for x86linux so this package has not been ported.
You can instruct SEAL to ignore that package
during the installation, setting in the

SCRAMToolBox/LCGcon?gs/toolsCERN.conf
configuration file , “+ VALGRIND_BASE : “ .

• wxPython 2.3.3.1, 2.4.0.1, 2.4.2.4 : Required by
POOL. The installation of this package is rather
complex because it requires to use the make
command in several directories, it also requires
to run a Python script and the tests are also
Python scripts located in a different directory.
We found many errors building the 2.4.0.1
version, required by POOL up to the 1.6.5
version. Firstly we got some file processing
errors that we solved taking out the “--enable-
rpath” con?gure option, used by default on
Linux. In this case we must include the /lib
directory path in the LD_LIBRARY_PATH
environment variable. We als o got errors
installing the /locale files, solved using the GNU
msgfmt system program instead of the Sun’s
one. In addition, the Python script had problems
finding some source files. We noticed that these
files were located at the contrib directory so the
references “contrib/(…)/contrib.” needed to be
changed by just “contrib.”. We just added some
links to the needed directories. We didn’t find
this error in the latest wxPython version
(2.4.2.4). Please note that to install it out of our
Python directory the option “build_ext –inplace”
has to be added to the Python installation script.

• XercesC 1.6.0, 2.1.0, 2.2.0, 2.3.0, 2.5.0 :
Required by POOL. We built also the optional
samples.

• Zlib 1.1.4, 1.2.1 : Required by SEAL and PI.

SEAL
The installation instructions [13] inform us that SEAL
needs an external program, SCRAM, which down loads
the required sources from a cvs repository and then
performs the required installation commands generating
the required Makefiles from different locations, using the
configuration files at the SEAL cvs repository, written in
xml style. These Makefiles are not stored locally so in
many cases we have no access to the compilation
commands which may complicate debugging.
The installation method involve a cvs check out of some
SEAL configuration files, a SCRAM bootstrap command
and a SCRAM build command in the suitable directory.
To modify the SEAL source, we had to create our own
cvs repository and check the entire SEAL cvs repository
in.

For each change in the code we had to check it out,
modify it and then check it in with the appropriate cvs tag
(SEAL_1_3_ 3), because this tag is also in the
configuration files and is the one which SCRAM will
download.
We also had to create our own cvs repository for the
SCRAMToolBox. This is a set of configuration files
where SCRAM finds all the information about the
compilers and external programs that SEAL will use.

Afterwards, we had to change the SEAL configuration
files to point to these repositories instead of to the default
ones. In the check out step, we hit a cvs bug where it
complains about not being able to open a temporary file.
We circumvent this by touching the file in question. The
bug will be solved in the next cvs version.
Many SCRAM configuration files have a separated block
for each installation architecture so we just had to add the
missing Solaris ones. In some of the configuration blocks
the Solaris architecture was already there but only with
the Sun CC compiler so we had to add a new one using
gcc.
We had to change all the required external software paths
as well as the compiler paths and options. The compiler
options are distributed on different files that we had to
modify.
We had to configure the link options to use the Sun
linker. As part of the configuration, we also had to add all
the required system libraries to the link command line in
order to avoid symbol referencing errors.
The lcgdict script used tcsh syntax when invoking
/bin/csh, while scripts within gccxml used bash syntax
when invoking /bin/sh. Csh and sh are not identical to
tcsh and bash in Solaris so the references had to be
corrected.
We had to change wrong “defines” in several places in
order to cater for Solaris, in particular we had to replace
“ifdef __linux” by “ifndef _WIN32” in seal/Scripting/
PyLCGDict/src/LCGDictWrapper.cpp.
We found that seal/Foundation/SealBase/src/
SharedLibrary.cpp hardcoded the Linux method to find
the link map for dynamic linking, so we had to add
support for Solaris using the dlinfo() library call.
Some SEAL files in the cvs repository were missing the
version tag, therefore SCRAM was not downloading them
and SEAL could not find them. All the files under
”seal/Scripting/PyLCGDict2” only had the SEAL_1_4_0
tag. Similarly the seal/Documentation/WebSite/
doxygen.css file, and the seal/Documentation/WebSite/
workbook directory did not have any tag.

CONCLUSIONS
We have ported most of the External Software as well as
SEAL Version 1.3.3 to Solaris 8 using the GNU
compilers.
We have not been able to make POOL yet but we believe
that thanks to the work done on the External Software it
should be easy to do now if some interest on the Solaris
platform persists.
Changes in the code have been minimal thanks to the
portability of the GNU compilers, however the port is not
trivial because of the use of a different linker with
different options and different dynamic loading code, as
well as typing differences that produce some subtle errors.
Using the Sun compilers would have provided better
integration with the Sun linker and system headers, but

differences in code support, limitations in support for C++
templates would have made the port more difficult.
The complexity of the layer introduced by the SCRAM
software configuration tool and relying on a collection of
heterogeneous software built using different tools
increases the challenge.
The External Software is available in AFS in the
“/afs/cern.ch/project/sun/solaris/lcg/external“ hierarchy
using the SPI layout and conventions.
The modified SEAL sources as well as the
SCRAMToolBox ones for Solaris are available in the UI
CVS repository in http://ui.cvs.cern.ch/cgi-bin/ui.cgi/

ACKNOWLEDGEMENTS
We wish to thank Philippe Defert, Manuel Guijarro,
Andreas Pfeiffer, Shaun Ashby and Lassi Tuura for
kindly answering our questions.

REFERENCES
[1] http://www.cern.ch/
[2] http://lcg.web.cern.ch/LCG/

[3] http://lcgapp.cern.ch/project/
[4] http://savannah.cern.ch/projects/seal/
 http://lcgapp.cern.ch/project/cls/
[5] http://spi.cern.ch/extsoft/index.html
[6] http://service-spi.web.cern.ch/service-
 spi/external/gccxml/0.4.2_patch1/install.txt
[7] http://service-spi.web.cern.ch/service-
 spi/external/gccxml/0.4.2_patch1/_SPI/xml.c
[8] http://spi.cern.ch/extsoft/mysql%2B%2B.html
[9] http://pyxml.sourceforge.net/
[10] http://lcgapp.cern.ch/project/spi/lcgsoft/index.html
[11] JP.Wellisch, C.Williams , S.Ashby, Computing in

High Energy and Nuclear Physics, (2003)
[12] http://spi.cern.ch/cgi-bin/scrampage.cgi
[13] http://seal.web.cern.ch/seal/snapshot/devguide/
 howtorelease.html

