A Control Software for the ALICE High Level Trigger

Timm M. Steinbeck®, Volker Lindenstruth, Heinz Tilsner,
Kirchhoff Institute of Physics, Ruprecht-Karls-University Heidelberg, Germany,
for the ALICE Collaboration

Abstract

The ALICE High Level Trigger (HLT) cluster is fore-
seen to consist of 400 to 500 dual SMP PCs at the start-
up of the experiment. The software running on these PCs
will consist of components communicating via a defined
interface, allowing flexible software configurations. Dur-
ing ALICE’s operation the HLT has to be continuously ac-
tive to avoid detector dead time. In order to ensure that the
several hundred software components, distributed through-
out the cluster, operate and interact properly, a control soft-
ware was written that is presented here. It was designed
to run distributed over the cluster and to support control
program hierarchies. Distributed operation avoids central
performance bottlenecks and single-points-of-failures. The
last point is of particular importance, as each of the com-
modity type PCs in the HLT cluster cannot be relied upon
to operate continously. Control hierarchies in turn are rele-
vant for scalability over the required number of nodes. The
software makes use of existing and widely used technolo-
gies: Configurations of programs to be controlled are saved
in XML, while Python is used as a scripting language and
to specify actions to execute. Interface libraries are used to
access the controlled components, presenting a uniform in-
terface to the control program. Using these mechanisms the
control software remains generic and can be used for other
purposes as well. It is being used for HLT data challenges
in Heidelberg as well as during ALICE beamtests.

ALICE OVERVIEW

ALICE [1] [2] [3] is A Large Ion Collider Experiment
for the future Large Hadron Collider (LHC) being built at
CERN. It can be operated in both modes of LHC, proton-
proton (pp) as well as heavy-ion (HI). The primary task of
its High Level Trigger (HLT) [4] is the reduction of its input
data stream of up to 25 GB/s to at most 1.2 GB/s which are
accepted by the data acquisition for storage to tape. In order
to achieve this goal three basic measures are taken by the
trigger system: filtering of interesting events, selection of
regions-of-interest in events, and online compression of the
filtered and selected event data. For this purpose the HLT
performs a full online event reconstruction from the raw
data of the detectors participating in the trigger decision.
A PC cluster of initially 400 to 500 nodes will be used to
perform the analysis. The cluster nodes will be arranged
in multiple hierarchy levels matching the detector layout as
well as the sequence of analysis steps required. Processing

* timm.steinbeck @kip.uni-heidelberg.de

of data will be performed by a processing chain made up
of software components distributed over the cluster nodes
[5] [6]. In order to manage the large number of software
components active in the system the TaskManager control
system described in this paper has been developed.

THE TASKMANAGER CONTROL
SYSTEM

Requirements

For this control system a number of requirements have
been defined which it should fulfill:

e Flexibility: The exact configuration in which the HLT
will run has not yet been fixed. Furthermore it should
be possible to create setups for small tests, data chal-
lenges or testbeams easily. In addition the system
should retain the ability to be used for other projects
as well.

e Hierarchy: The more than 2000 processes expected
for the full HLT system will not be manageable in a
sensible manner by a single supervisor instance. Ad-
ditionally a good hierarchy can enable partitioning
and significantly ease configuration of the system.

e Fault Tolerance: As the single PCs in a cluster are
inherently unreliable the system should be designed
from the start to avoid single-points-of-failure. This
will allow the system to be built without single very
reliable but also expensive components. It should also
be possible to integrate TaskManager systems with
other fault-tolerance or fabric-management software
or hardware, e.g. the EU DataGrid’s work package 4
[7] software or the system presented in [8].

e Finally, the system should be able to run alongside the
analysis processes on the cluster nodes without im-
pacting performance significantly.

Architecture

The architecture of the TaskManager system is outlined
in Fig. 1. Around the core component three subsystems
provide most of the functionality of the system: The Con-
figuration Engine (CE), the Program State and Action En-
gine (PSAE), and the Program Interface Engine (PIE).
XML [9] configuration files are read in by the Configura-
tion Engine which provides the program’s other modules
with access to the file’s configuration items. Contained



XML
Configuration
File ,

Configuration
Engine

Program
State & Action
Engine

Embedded
Python
Interpreter

Interface
Library

Controlled
Programs

Figure 1: The Architecture of the TaskManager System

in the configuration file are sections of Python [10] code
which are executed by an embedded Python interpreter.
This execution is controlled by the Program State and Ac-
tion Engine, which triggers it in response to certain events,
e.g. state changes in programs. Communication with the
controlled programs themselves is performed by the Pro-
gram Interface Engine. It uses external interface libraries,
supplied with the controlled programs, that offer a well-
defined interface for communication.

The Configuration Engine

As already mentioned above, the TaskManager config-
uration is stored in XML files which are read in by the
Configuration Engine. The other modules, including the
core, can then query specific configuration items from the
CE. Primarily a configuration file contains specifications
of the programs to be started under the control of the sys-
tem as well as specifications of Python code to be executed
for specific events. Two more important items stored are
the interface library used for communication with the pro-
grams as well as master-slave configuration items in hier-
archical setups.

For each program that has to be run under the TaskMan-
ager’s control a configuration entry holds several different
sub-entries. The most important of these is the specifica-
tion of the command that has to be executed for the pro-
gram to run. Included in this are all command-line param-
eters required for the program’s operation. For commu-
nication with the program its address has to be known to
the system. It is handled only as an opaque string that is
passed to the interface library which can thus interpret it
as needed. The main part of the configuration will mostly
be taken up by the different Python code sections. Sev-
eral program events exist for which code can be specified.
This code is executed when the given event occurs. Sup-
ported events include state changes, program termination,
and changes in the program’s configuration entry. Beyond
these items, resources, e.g. files, used by the program can
also be specified, so that they can be cleaned up after ter-

mination.

Next to the program entries and their respective sub-
entries configuration files can also contain a number of
global configuration entries. Primary entries in this area
are the interface library used for program communication
and a global Python section executed upon a state change
in any program. For hierarchical setups the slave configu-
ration also is one of the global configuration entries. The
master configuration is not treated specially as it makes use
of the normal mechanisms for program start and uses the
interface library mechanism for master-slave communica-
tion.

The Program State and Action Engine

In many existing control systems classical state ma-
chines are used for modelling of programs states’ and spec-
ification of actions to be taken on events, particularly pro-
gram state changes. In the TaskManager system these tasks
are performed instead by Python Actions, code specified
in the configuration file. This Python code is executed by
an embedded Python interpreter. Compared to a pure state
machine this approach is much more flexible and powerful,
supplying users with the full capabilities of the Python lan-
guage, which is powerful as well as easy to learn and pro-
gram in. Different events are supported in the system which
will cause Python Actions to be executed. Among them are
program state changes, either global or per program, pro-
gram termination, or configuration changes. When such an
event occurs the corresponding Action code is executed by
the interpreter.

In order to allow access to TaskManager internal data, in
particular to query programs’ states and send commands
to them, a set of special functions are exported by the
TaskManager to the interpreter. These functions can be
called by the Python code like ordinary Python functions.
Python code can thus interact with the TaskManager sys-
tem and/or controlled programs. Next to querying pro-
grams’ states and sending commands a number of other
functions are available. More detailed status data for a pro-



gram can be queried as well as its state. Programs can be
started or terminated explicitly. Finally, data can be ex-
changed between master and slave TaskManager instances.

The Program Interface Engine

Different programs typically present different interfaces
to outside programs for querying their state and status data
and sending commands to them. This ranges from the
standard Unix/Linux mechanisms of process state determi-
nation and signalling, over shared memory areas contain-
ing status information to background threads for handling
TCP network connections for queries and commands. A
mechanism has been developed for the TaskManager so
that it can provide maximum flexibility and support for all
kinds of programs. The mechanism uses interface libraries
that are supplied together with the programs. As these li-
braries conform to a defined calling interface, supplying a
set of specified functions, the TaskManager can use each of
them in a similar manner. The libraries are implemented as
shared libraries whose pathnames are specified in the con-
figuration files. Using special operation system functions
the TaskManager can load these libraries with their func-
tions dynamically at runtime. After this loading process
the functions contained in the library can be called as nor-
mal from C/C++ programs.

Among the interface library functions are the functions
for querying program state and status data as well as send-
ing commands to programs, which are called both from
the TaskManager core as well as from the Python Action
scripts. Beyond this functionality three major points of
functionality are provided by library functions. Initializa-
tion and deinitialization of the library itself are typically
called only once, at the start and termination of a spe-
cific TaskManager setup. The last major function group
that has to be provided in interface libraries allows the
TaskManager to wait for interrupt (or Look-At-Me (LAM))
messages from controlled programs. These messages will
cause the TaskManager to query a program’s state outside
of its normal periodic polling schedule.

Master-Slave Operation

For master-slave operations two additional facilities are
supplied by the TaskManager system, one each on the slave
and master side. In slave TaskManager processes an addi-
tional component is active, the Master-Slave interface ob-
ject. This component is responsible for receiving com-
mands from master processes and dispatching them to the
appropriate slave TaskManager subsystem. A second im-
portant functionality of this component is providing status
data to master processes.

On the master process side no special extensions are
needed inside the TaskManager process itself. Here the
basic mechanism of communication with controlled pro-
cesses via an interface library is used. A special inter-
face library is provided that supplies the required sup-
port for master-slave TaskManager communication. Slave

Taskmanagers are specified as any other process to be exe-
cuted under the master TaskManager’s control. By reusing
the default mechanism the required configuration item sup-
port is reduced to a minimum on the master.

SAMPLE SETUP

An example of a TaskManager configuration is the setup
that was intended to be used for the HLT activities during
the beamtest of an ALICE TPC chamber prototype, out-
lined in more detail in [6]. In this setup two HLT PCs were
used to obtain data from the detector via optical links from
a DAQ PC. A third HLT PC received this data via TCP over
Gigabit Ethernet, merged it, and transmitted it to another
DAQ PC via identical optical links. On the three HLT PCs
several software components are active, three on each of
the two receivers and five on the sender. These components
are controlled by a small hierarchical TaskManager config-
uration. In this configuration, shown in Fig. 2, one master
TaskManager and three slave TaskManagers are used.

Each of the three slave TaskManagers supervises the lo-
cal processes on one of the nodes. These TaskManager in-
stances run directly on the same nodes as the processes they
are supervising. Communication among slave TaskMan-
agers and their processes is therefore purely local, although
it is still handled via TCP/IP. But on Linux local TCP/IP
communication bypasses some of the networking stack.

The master TaskManager process also communicates
with its slaves over TCP/IP in this setup. It can therefore
be run on any computer which has a network connection
to the three HLT PCs involved. For simplicity it was also
run on the third HLT PC, the merger. From here it com-
municates only with its slaves, it does not directly establish
communication with the processes controlled by the slave
TaskManagers.

As described in [6] the setup actually used for the HLT
beamtest activity was different from this intended one, for
due to the data size limit in DDL protocol. But the setup
used functioned without any problems. As setups of similar
or greater complexity are and have been used for local tests
in Heidelberg as well, no problems are to be expected for
the planned configuration as well.

SUMMARY AND OUTLOOK

The presented TaskManager control system provides
flexible and hierarchical program control. It achieves this
through two main features, the first of which is the use of
an embedded Python interpreter for state and action han-
dling. The second of these features is the use of interface
libraries belonging to the controlled programs, making the
TaskManager adaptable to most if not all programs. By us-
ing XML as the configuration file format both a quick and
easy manual creation for small setup is possible as well
as automated generation by programs for large configura-
tions and/or autonomous operations. Additionally it can
avoid single-points-of-failures in its configurations through



Node alice-hlt00

Node alice-hlt04

Publisher
Bridge
Head

HLT-Out
Subscriber

Subscriber
BridgeHead

Node alice-hlt05

TaskVianager

2
RC
Publisher
Storage
Writer
Subscriber
BridgeHead

Event-Rate
Subscriber

Figure 2: Configuration of the TaskManager system used during the TPC beamtest. Black arrows show the control flow
of status information and commands, grey arrows show the flow of data.

its hierarchical design, increasing fault-tolerance and thus
reliability. It has already been used for ALICE HLT data
challenges as well as for the HTL activity during a TPC
prototype testbeam. But it has also been designed to be
adaptable to a wide range of problems, inside the ALICE
HLT as well as for unrelated projects outside of it. The
TaskManager package together with auxiliary packages is
available from [11], documentation can be found at [12].

ACKNOWLEDGEMENTS

Work on the ALICE High Level Trigger has been
financed by the German Federal Ministry of Edu-
cation and Research (BMBF) as part of its pro-
gram “Forderschwerpunkt Hadronen- und Kernphysik -
GrofBgerite der physikalischen Grundlagenforschung”.

REFERENCES

[1] http://ALICE.web.cern.ch/ALICE/.
[2] http://ALICE.web.cern.ch/ALICE/user.html.

[3] The ALICE Collaboration, “ALICE - Technical Proposal
for A Large Ion Collider Experiment at the CERN LHC”,
CERN/LHCC/95-71, LHCC/P3, December 1995.

[4] The ALICE Collaboration, “ALICE - Technical Design Re-
port of the Trigger, Data Acquisition, High-Level Trig-
ger, and Control System”, CERN/LHCC/2003-062, January
2004.

[5] T. M. Steinbeck, V. Lindenstruth, H. Tilsner, “A Software
Data Transport Framework for Trigger Applications on Clus-
ters”, CHEPO3, La Jolla, USA, 2003.

[6] T. M. Steinbeck, V. Lindenstruth, H. Tilsner, “New experi-
ences with the ALICE High Level Trigger Data Transport
Framework”, CHEPO4, Interlaken, Switzerland, 2004.

[7]1 http://hep-proj-grid-fabric.web.cern.ch/hep-proj-grid-fabric/.

[8] R.Panse etal, “A Hardware Based Cluster Control And Man-
agement System”, CHEPO4, Interlaken, Switzerland, 2004.

[9] http://www.w3.org/ XML/

[10] http://www.python.org/.
[11] http://www.ti.uni-hd.de/HLT/software/software.html

[12] http://www.ti.uni-hd.de/HLT/documentation/
documentation.html



